技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

材料開発のためのデータ解析入門

材料開発のためのデータ解析入門

~マテリアルズインフォマティクス、ケモインフォマティクス、プロセスインフォマティクス~
東京都 開催

開催日

  • 2019年6月27日(木) 10時30分 17時30分

受講対象者

  • 化学・産業界において、インフォマティクスを活用して材料開発 (および化学品開発) に従事している研究者・技術者
  • 材料開発 (および化学品開発) にインフォマティクスを今後活用しようと考えている研究者・技術者

修得知識

  • ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス・データ解析・機械学習・分子設計・材料設計・プロセス設計・プロセス管理の基礎知識
  • ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス分野の最新の研究事例
  • データ解析の一般的なすすめ方・活用の仕方
  • データ解析の応用事例
  • 最新のデータ解析手法・モデリング手法
  • モデルの予測精度向上の方法
  • モデルの逆解析の方法

プログラム

 近年、化学の分野や産業全般においてデータが蓄積されつつあり、そのデータを解析する動きが活発になっている。例えば高機能性材料を開発する際、化合物データを用いて化学構造と物性・活性・特性との間の関係をモデル化することで、化合物を合成したり合成後に物性値を測定したりする前に、化学構造から物性値を推定でき、逆に良好な物性値をもつ化学構造の設計もできる。さらに、製造条件とその製造の結果としての製品品質との間の関係をデータからモデル化することで、望ましい品質を達成するための製造条件を探索できる。高機能性材料を製造する際、センサー等で容易に測定可能なプロセス変数と測定が困難な製品品質との関係をデータからモデル化することで、製品品質の値をリアルタイムに推定し、迅速かつ安定に制御・管理ができる。このように、高機能性材料などの開発データ、化学・産業プラントにおける運転データなど、蓄積されたデータは非常に有用であるが、十分に活用しきれていない。
 本セミナーでは、化学・産業データの使い方・解析の仕方を基礎から解説する。情報科学・データサイエンスに基づき、データから種々の材料の機能を予測するモデルを構築したり、構築したモデルを活用することで新たな構造・実験条件・材料・装置を設計したりする方法を説明する。さらに、ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス分野を中心にして豊富な応用事例も紹介する。

  1. ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスの基礎知識
    1. 機械学習・人工知能
    2. 定量的構造物性相関・定量的構造活性相関
    3. 化学構造生成
    4. 分子設計
    5. 材料設計
    6. プロセス設計
    7. プロセス管理
    8. ケモインフォマティクス
    9. マテリアルズインフォマティクス
    10. プロセスインフォマティクス
  2. 化学・産業データ解析の進め方・活用方法
    1. データの形式、記述子
    2. データの前処理
      1. 標準化
      2. 変数選択
      3. スムージング (平滑化)
    3. データの可視化・低次元化
      1. 主成分分析 (Principal Component Analysis, PCA)
      2. Generative Topographic Mapping (GTM)
      3. 多様体学習
      4. 可視化の性能を検討するための指標
    4. クラスタリング
      1. 階層的クラスタリング
      2. k平均法 (k – means)
      3. 混合ガウスモデル (Gaussian Mixture Model, GMM)
    5. クラス分類
      1. 線形判別分析 (Linear Discriminant Analysis, LDA)
      2. 決定木 (Decision Tree, TD)
      3. ランダムフォレスト (Random Forest, RF)
      4. サポートベクターマシン (Support Vector Machine, SVM)
    6. 回帰分析
      1. 最小二乗法による重回帰分析 (Multiple Linear Regression (MLR) or Ordinary Least Squares (OLS) )
      2. 部分的最小二乗法 (Partial Least Squares, PLS)
      3. 決定木 (Decision Tree, DT)
      4. ランダムフォレスト (Random Forest, RF)
      5. サポートベクター回帰 (Support Vector Regression, SVR)
    7. モデルの予測性能の向上
      1. アンサンブル学習
      2. 半教師あり学習 (半教師付き学習)
    8. モデルの適用範囲
      1. データ範囲
      2. データ中心からの距離
      3. データ密度
      4. アンサンブル学習
    9. モデルの逆解析
      1. グリッドサーチ
      2. サンプリング
      3. ベイズの定理
    10. 実行するためのプログラム紹介
  3. 分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例
    1. 化学空間の可視化に基づく分子設計
    2. 定量的構造物性 (活性) 相関モデルの逆解析に基づく分子設計
    3. 定量的構造物性 (活性) 相関モデルの適用範囲を考慮した分子設計
    4. 実験計画法による材料設計?目標達成確率に基づく適応的実験計画法?
    5. シミュレーションとインフォマティクス技術を活用したプロセス設計
  4. まとめ・質疑応答

講師

  • 金子 弘昌
    明治大学 理工学部 応用化学科
    専任講師

会場

中央大学 駿河台記念館
東京都 千代田区 神田駿河台3丁目11−5
中央大学 駿河台記念館の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 45,370円 (税別) / 49,000円 (税込)
複数名
: 20,370円 (税別) / 22,000円 (税込)

案内割引・複数名同時申込割引について

シーエムシーリサーチからの案内をご希望の方は、割引特典を受けられます。
また、2名以上同時申込で全員案内登録をしていただいた場合、1名様あたり半額 (税込 22,000円)となります。

  • Eメール案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 40,741円(税別) / 44,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 40,741円(税別) / 44,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 61,111円(税別) / 66,000円(税込)
  • Eメール案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 45,370円(税別) / 49,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,741円(税別) / 98,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 136,111円(税別) / 147,000円(税込)

アカデミック割引

  • 1名様あたり 23,148円(税別) / 25,000円(税込)

学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院の教員、学生に限ります。

本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時
2019/11/25 計測インフォマティクスのデータ解析とその事例 東京都
2019/11/25 統計的データ処理のための確率統計・線形代数入門 東京都
2019/11/27 機械学習を用いたX線計測および計測データ解析の自動化技術 東京都
2019/11/29 時系列データ分析の基礎とPython, Rを用いた利用技術 東京都
2019/11/29 多変量解析の基礎と実務への活用 東京都
2019/12/2 統計的データ解析と実験計画法の基礎と実践 東京都
2019/12/5 分析法バリデーションの統計解析 入門 & 専門 2日間コース 京都府
2019/12/5 分析法バリデーションの統計解析 入門コース 京都府
2019/12/6 分析法バリデーションの統計解析 専門コース 京都府
2019/12/6 確率論入門の入門 東京都
2019/12/6 金融工学のための数理入門 4日間パック 東京都
2019/12/9 リチウムイオン電池における材料シミュレーションによる電池材料の機能解析とマテリアルズ・インフォマティクスへの展開 愛知県
2019/12/9 臨床試験における症例数設定のイ・ロ・ハ 東京都
2019/12/13 Pythonによるディープラーニング実装に必要な数式理解のための数学解説 東京都
2019/12/20 マテリアルズインフォマティクス概説 東京都
2019/12/20 データを利益に変えるデータサイエンス入門講座 東京都
2019/12/24 技術者・研究者のための実験計画法入門講座 東京都
2019/12/25 データ分析による仮説の立て方、検証の仕方とまとめ方 東京都
2019/12/25 データサイエンス入門 東京都
2019/12/25 技術者・研究者のための多変量解析入門講座 東京都