技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

強化学習の基礎とその使い方

強化学習の基礎とその使い方

~Q学習から深層強化学習 AlphaGo Zeroまで~
東京都 開催 会場 開催 デモ付き

概要

本セミナーでは、機械学習・強化学習について基礎から解説し、学習エージェントと環境、アルゴリズム、深層強化学習について分かりやすく解説いたします。

開催日

  • 2018年12月18日(火) 10時00分 17時00分

修得知識

  • 強化学習の問題
  • 様々な学習方法 (伝統的なQ学習から最新のAlphaGo Zeroまで)
  • 実際の問題に対して強化学習を応用する方法

プログラム

 人工知能分野では、プロ棋士の経験に基づいて囲碁の打ち方を学習するAlphaGoが一昨年に大きな話題となり、続いてこれを上回るAlphaGo Zeroが昨年提案されました。AlphaGo Zeroは深層強化学習という最先端技術を用いることでプロ棋士の経験を全く使用せずに学習できること、また応用分野が限定されておらず、どのような分野でも適用可能であることから世界中のあらゆる分野で注目を集めております。
 本講演では、このように注目を集めて続けている強化学習を基礎から平易に解説します。学習の方法について、伝統的で幅広く用いられているQ学習から最新の深層強化学習まで、様々な学習法を紹介します。例を用い、また練習問題を解くことで理解を深めます。

  1. 強化学習の例示 (デモンストレーション)
    1. 最短経路探索
    2. ゲームプレイ
    3. 二足歩行
  2. 強化学習問題
    1. 学習エージェントと環境
    2. 問題の定義
    3. 設定例
  3. 表形式の強化学習法
    1. 価値関数
    2. 行動選択法
    3. 伝統的な学習法
      • Q学習
      • Sarsa
  4. 近似を用いる強化学習法
    1. 価値関数の近似
      • 放射基底関数
      • ニューラルネットワーク
    2. 勾配法
    3. 価値勾配を用いる学習法
    4. 方策勾配を用いる学習法
  5. 人間を超える学習法:深層強化学習
    1. 深層学習 (ディープラーニング)
    2. ビデオゲームに対する学習法
    3. 囲碁に対する学習法: AlphaGoとAlphaGoZero
    • 質疑応答

講師

  • 飯間 等
    京都工芸繊維大学 情報工学・人間科学系
    准教授

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 54,000円 (税込)
複数名
: 45,000円 (税別) / 48,600円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 45,000円(税別) / 48,600円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 54,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 97,200円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 145,800円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/8 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/9 マテリアルズインフォマティクス (MI) の最新動向と小規模データ駆動型MIの展開 オンライン
2025/4/10 Vision Transformerの仕組みとBEV Perception オンライン
2025/4/11 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/15 自動運転・運転支援に向けた各種センサーを用いた周辺環境認識技術 オンライン
2025/4/16 異常検知・学習データ作成のための生成AI活用 オンライン
2025/4/16 Pythonによる機械学習の基礎と実践 オンライン
2025/4/16 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/17 スパース推定の基礎、本質の把握・理解と実装応用技術への展開 オンライン
2025/4/17 画像認識のためのディープラーニングとモデルの軽量化 オンライン
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 ベイズ推定を用いたデータ解析 オンライン
2025/4/25 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/4/25 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/4/30 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/5/6 ベイズ推定を用いたデータ解析 オンライン
2025/5/7 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/5/7 生成AIを活用したデータ分析の基礎とポイント オンライン