技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

製薬企業におけるIn silico創薬の体制作りとスパコン・人工知能活用

製薬企業におけるIn silico創薬の体制作りとスパコン・人工知能活用

東京都 開催 会場 開催

開催日

  • 2017年10月26日(木) 10時00分 17時45分

プログラム

第1部. インシリコ創薬における予測精度の向上に求められるもの

(2017年10月26日 10:00〜11:15)

 コンピュータによるモデリングを実現するための基盤技術として、1) データ統合とデータベース構築、2) 機械学習を中心とする統計モデリング、3) 一般的な基本原理に基づく数理モデリング、の3つをあげることができる。これら各要素がインシリコ創薬における予測精度にどのように関係するかを議論する。

  • 創薬の初期研究における薬物動態、毒性の予測
  • 創薬支援インフォマティクス構築プロジェクトにおける薬物動態基礎データベースの開発
  • データ統合の問題点
  • AI技術などを用いたキュレーション自動化の試み
  • 創薬ターゲットの絞り込みを支援する統合データウェアハウスTargetMine
  • 生物学的ネットワークの統合解析
  • 感染症や呼吸器疾患における新規制御因子の探索例
  • タンパク質の立体構造と相互作用の予測
  • 機械学習に基づくタンパク質間相互部位の予測と応用
  • 質疑応答

第2部. インシリコ創薬の現状・問題点・展望とチームマネジメント、研究者育成

(2017年10月26日 11:30〜12:45)

 インシリコ技術は創薬現場において一定の評価を受ける時代になってきた。近年のソフトウエア、ハードウエアの進展と、データの急増、またインシリコ技術活用の経験やノウハウの蓄積などが組み合わさった結果といえる。そして、各種成功例の報告も増えてきつつある状況である。しかしながら、一言にインシリコ創薬と表現しても、非常に多様であり、また変貌も著しいため、その全体像を把握することは困難とされている。創薬現場の実際的ニーズに応えるには、現状と問題点、および展望を整理・理解しておく必要がある。
 そこで、今回の講座のトピックとして、標的探索、低分子創薬、抗体/蛋白創薬におけるインシリコ技術利用について、まとめて報告する。また、どのようなチーム構成で担当するのか、といったマネージメントが一つのポイントである。この論点で情報共有される機会は稀であり、今回、もう一つのトピックとして紹介する。

  1. インシリコ創薬の外観
  2. インシリコ創薬の現状、問題点と展望
    1. Big Data化
    2. バイオインフォマティクス
    3. 低分子創薬
    4. 抗体/蛋白創薬
  3. チーム構成要員とマネージメント
  4. 研究者教育
    • 質疑応答

第3部. IT創薬 (スパコンを活用した創薬) 適用のための留意点と技術課題

(2017年10月26日 13:30〜14:45)

 富士通が2004年から推進してきたIT創薬 (スパコンを活用した医薬候補化合物創出) 研究のなかで経験した数々の失敗例にもとづいて、スパコン活用の留意点と技術課題を共有させていただければと思います。

  1. 医薬品研究へのスパコン適用
  2. 富士通IT創薬の概要
    1. de novo 医薬候補化合物設計 (OPMFTM)
    2. 高精度結合活性予測 (MAPLECAFEETM)

第4部. ディープラーニングを用いた化合物 – タンパク質の相互作用予測

(2017年10月26日 15:00〜16:15)

 創薬にかかるコストや時間の削減を目指して様々な創薬ステージにおけるバーチャルスクリーニングの研究がおこなわれてきている。前節では、既知の化合物との構造類似性に基づくバーチャルスクリーニングLigand-based virtual screening (LBVS) へのディープラーニングの導入について述べられていた。一方、Structure-Based Virtual Screening (SBVS) の代表であるドッキングシュミレーションにおいても、ディープラーニングと組み合わせることで性能が向上したことが報告されている。
 本節では、これらLBVSやSBVSとは異なる第三の方法として、化合物の構造情報とタンパク質の配列情報の2つを用いて相互作用を予測する場合を例に創薬へのディープラーニングの利用について解説する。

  1. 創薬とディープラーニング
  2. 深層ネットワークの入出力
  3. 化合物 – タンパク質の相互作用データ
    1. 負例データの発生
    2. データのバイアス問題
  4. 学習
    1. CPU型かGPGPU型か
    2. ディープラーニングのモデル
    3. プレトレーニング
    4. ハイパーパラメータ
    5. オプティマイザーの選択
    • 質疑応答

第5部. 人工知能を用いた統合的ながん医療システムの開発と創薬研究への応用

(2017年10月26日 16:30〜17:45)

 我が国においては世界でもトップレベルの質の高い、がんの基礎研究・臨床研究・疫学研究が長い間継続的に行われてきており、蓄積されたデータは膨大な量になる。これまでは蓄積された膨大なデータを、統合的に解析する手段が無かったが、近年の人工知能技術の発展により、ビッグデータの解析が可能な時代となっている。特に「50年来のブレークスルー」とも言われる深層学習 (Deep Learning) 技術の台頭により、これまでは到底不可能であると考えられてきた自動運転システムや知的ロボット、さらには金融、製造業などへの応用など、様々な社会インフラへの定着が進んできている。
 医療の分野においても、次世代シークエンサーの発展により$1000で全ゲノムを解析することも可能になり、大量の患者さんの詳細なゲノム情報やマルチオミックスデータ (DNA、RNA、タンパク質、エピゲノムやmicroRNAも含む) とこれまでの医療履歴などを組み合わせて解析することにより、予防、診断、治療、創薬などの個別化医療を構築する試みが世界中で始まっている。これらの大量の医療情報の統合プラットフォームには、最新のIT技術や人工知能技術 (機械学習・深層学習) が欠かせなくなることは間違いなく、現場の医療機関と密接な連携を保ち、最先端IT技術を取り込み、世界の開発競争に負けない体制を作り上げて、人工知能を利用した医療情報統合化による、革新的がん医療システムを確立させることが急務である。
 演者を研究代表とした研究課題“人工知能を用いた統合的ながん医療システムの開発”が、2016年度戦略的創造研究推進事業 (CREST) に採択され、国立がん研究センターを中心に現在人工知能技術を用いた新しいがん医療システムの開発に取り組んでいる。プロジェクトを推進する上で得た知見・データを基に、人工知能技術のがん医療への導入の現状及び創薬への応用に関して論じる。

  1. 人工知能技術とがん研究
  2. 医学研究における人工知能技術の重要性
  3. CRESTプロジェクトの概要
  4. メディカルAI技術開発の現状
  5. 人工知能を用いたがんの分子標的治療薬開発
    • 質疑応答

講師

  • 水口 賢司
    国立研究開発法人 医薬基盤・健康・栄養研究所 バイオインフォマティクスプロジェクト
    プロジェクトリーダー
  • 白井 宏樹
    アステラス製薬 株式会社 バイオサイエンス研究所
    専任理事 / バイオインフォマティクスリーダー
  • 松本 俊二
    富士通 株式会社 ヘルスケアシステム事業本部
    エグゼクティブリサーチャー
  • 浜中 雅俊
    国立研究開発法人 理化学研究所 革新知能統合研究センター (AIP) 音楽情報知能チーム
    チームリーダー
  • 浜本 隆二
    国立がん研究センター 研究所 がん分子修飾制御学分野
    分野長

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 60,000円 (税別) / 64,800円 (税込)
複数名
: 55,000円 (税別) / 59,400円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 55,000円(税別) / 59,400円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 60,000円(税別) / 64,800円(税込)
    • 2名様でお申し込みの場合 : 2名で 110,000円(税別) / 118,800円(税込)
    • 3名様でお申し込みの場合 : 3名で 165,000円(税別) / 178,200円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/11/6 OOS/OOTの正しい理解と判断のポイント オンライン
2024/11/6 FDAから製造所認証を得るための査察対応ポイント オンライン
2024/11/6 GMP・DIガイドラインに沿った製造/試験記録の作成・運用とその監査 オンライン
2024/11/6 生物薬品 (バイオテクノロジー応用医薬品等) におけるCMC開発戦略と開発ステージに応じた対応 オンライン
2024/11/6 バイオ/抗体医薬品における品質試験/安定性試験と品質規格設定のポイント オンライン
2024/11/6 バイオ医薬品原薬工場建設プロセスおよびバリデーションのポイント オンライン
2024/11/6 医薬品中の元素不純物分析のデータ試験・管理及びPMDA等の対応ポイント オンライン
2024/11/7 変形性関節症の病態/治療・診断技術の現状と臨床現場が望む新薬像 オンライン
2024/11/8 スモールデータ解析の方法と実問題解決への応用 オンライン
2024/11/8 情報不足な開発初期段階において医薬品の事業性評価を適切に進める為のデータ活用と売上予測の方法 オンライン
2024/11/11 インド・中国における医薬品薬事戦略と現地対応ノウハウ オンライン
2024/11/11 電子化/MES・LIMS導入・連携コース (全2コース) オンライン
2024/11/12 説明可能・信頼できるAIの開発とその活用方法 オンライン
2024/11/12 ICH M7変異原性不純物/ニトロソアミン不純物対応コース オンライン
2024/11/12 ICH M7 (変異原性不純物) ガイドラインとエキスパートレビューにおける変異原性評価・判断の考え方 オンライン
2024/11/12 医療データ (RWD) 活用時の100の落とし穴 オンライン
2024/11/12 意思決定にむけたターゲットプロダクトプロファイルの設定 オンライン
2024/11/12 非GLP試験における信頼性確保 オンライン
2024/11/12 医薬品R&D段階でのNPV活用と課題解決策 オンライン
2024/11/13 実務に役立つ医薬品GCP入門講座 オンライン

関連する出版物

発行年月
2024/3/22 GxP領域でのクラウド利用におけるCSV実施/データインテグリティ対応
2024/3/22 GxP領域でのクラウド利用におけるCSV実施/データインテグリティ対応 (製本版 + ebook版)
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2024/1/31 不純物の分析法と化学物質の取り扱い
2023/12/20 遺伝子治療用製品の開発・申請戦略 (製本版 + ebook版)
2023/12/20 遺伝子治療用製品の開発・申請戦略
2023/11/30 当局査察に対応した試験検査室管理実務ノウハウ
2023/11/29 開発段階に応じたバリデーション実施範囲・品質規格設定と変更管理 - プロセス/分析法バリデーション - (製本版 + ebook版)
2023/11/29 開発段階に応じたバリデーション実施範囲・品質規格設定と変更管理 - プロセス/分析法バリデーション -
2023/8/31 ゲノム編集の最新技術と医薬品・遺伝子治療・農業・水畜産物
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2023/5/26 グローバル展開・3極規制要件の違いをふまえたRMP (日本/欧州) ・REMS (米国) 策定とリスク設定・対応 (製本版 + ebook版)
2023/5/26 グローバル展開・3極規制要件の違いをふまえたRMP (日本/欧州) ・REMS (米国) 策定とリスク設定・対応
2023/2/28 mRNAの制御機構の解明と治療薬・ワクチンへの活用
2023/1/31 新規モダリティ医薬品のための新しいDDS技術と製剤化
2023/1/31 超入門 改正GMP省令セミナー
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/12/9 データインテグリティに適合するための電子/紙データ・記録の運用管理とSOP作成手法 (製本版 + ebook版)
2022/12/9 データインテグリティに適合するための電子/紙データ・記録の運用管理とSOP作成手法