技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

基礎から学ぶベイズ統計学と実用例

基礎から学ぶベイズ統計学と実用例

東京都 開催 会場 開催

概要

本セミナーでは、ベイズ統計学について基礎からわかりやすく解説し、一般的な統計学との違い、ベイズ統計学の使いどころがわかる事例も紹介いたします。

開催日

  • 2019年6月18日(火) 10時30分16時30分

修得知識

  • ベイズ統計学の基礎
  • ベイズ統計学と一般的な統計学の手法との違い
  • ベイズ統計学での推論の進め方 (ベイズ的アプローチ)
  • データ以外の情報を利用した解析手法

プログラム

 データの解析をしている際に、「データ以外の情報を利用した解析をしたい」と思ったことはありませんか?そもそもデータ解析の目的が、客観的な解析をしたいというものであるならば、データ以外の情報を利用することに懐疑的になるかもしれません。たしかに、一般的な統計学の手法では、得られたデータから、その背後に潜む構造を推測する形式がとられています。つまり、推測時に利用できる情報はデータのみといってよいでしょう。その一方で、ベイズ統計学では、データから得られる情報だけでなく、事前に知りえた情報 (主観的に設定した情報) を利用して推測していきます。本講演では、ベイズ統計学の考え方を学ぶことにより、一般的な統計学の手法との違いを意識しながら、データとそれ以外の情報を組み合わせた推論方法を習得することができます。
 また、ベイズ統計学を学んだことのある方の中には、手法について理解はできたが、実際にどのように用いればよいか分からない方もいらっしゃるかもしれません。特に、一般的な統計学の手法でも十分に扱える問題では、せっかく学んだベイズ統計学を活用する機会もないことでしょう。本講演では、ベイズ統計学の特徴が活かされる事例を取り扱うため、ベイズ統計学の使いどころがはっきりと理解できるようになるでしょう。

  1. ベイズ統計学の考え方
    1. ベイズ統計学の考え方
    2. 条件付確率とベイズの定理
    3. 事前情報とデータによる情報
  2. マルコフ連鎖モンテカルロ法 (MCMC法)
    1. ベイズ統計学における推定手法の考え方
    2. マルコフ連鎖モンテカルロ法 (MCMC法) の考え方
    3. ギブスサンプラーとそのアルゴリズム
  3. データ拡大法
    1. データ拡大法の考え方
    2. 打ち切りなどの不完全な観測データへの応用
    3. データ拡大法のアルゴリズム
    • 質疑応答

会場

江東区役所 商工情報センター (カメリアプラザ)

9F 会議室

東京都 江東区 亀戸2-19-1
江東区役所 商工情報センター (カメリアプラザ)の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,278円 (税別) / 49,980円 (税込)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。
複数名で同時に申込いただいた場合、1名様につき 23,139円(税別) / 24,990円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 43,750円(税別) / 47,250円(税込)
    • 2名様でお申し込みの場合 : 2名で 46,278円(税別) / 49,980円(税込)
    • 3名様でお申し込みの場合 : 3名で 69,417円(税別) / 74,970円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 46,278円(税別) / 49,980円(税込)
    • 2名様でお申し込みの場合 : 2名で 92,556円(税別) / 99,960円(税込)
    • 3名様でお申し込みの場合 : 3名で 138,833円(税別) / 149,940円(税込)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/19 微生物試験の妥当性確保のための統計的手法及び評価 オンライン
2026/1/19 統計手法の基礎 オンライン
2026/1/20 ICH Q2(R2) の要点と分析法バリデーション実施 オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (2日間) オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (基礎編) オンライン
2026/1/23 分析法バリデーションの進め方と分析試験計画の策定 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 ラマン分光法の基礎から実際の分析手法・各産業界での活用例 オンライン
2026/1/26 Pythonを用いた実験計画法とその最適化 オンライン
2026/1/27 実験・測定に必要な統計の基礎とデータ解析のポイント オンライン
2026/1/27 医薬品・部外品・化粧品分野で必要な品質管理/検査に役立つ化学分析の基礎 オンライン
2026/1/27 ラマン分光法の基礎から実際の分析手法・各産業界での活用例 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/29 ICH Q2(R2) の要点と分析法バリデーション実施 オンライン
2026/1/29 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (実践テクニック・応用編) オンライン
2026/1/29 計算ブラックボックスからの脱却と精度評価の本質に迫る オンライン
2026/1/29 やさしく学ぶベイズ統計 オンライン
2026/1/30 技術者・研究者のための実験計画法入門 オンライン
2026/1/30 やさしく学ぶベイズ統計 オンライン