技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

逆強化学習・模倣学習の基礎と応用

逆強化学習・模倣学習の基礎と応用

オンライン 開催

開催日

  • 2023年4月20日(木) 10時00分 16時00分

修得知識

  • 逆強化学習の問題設定
  • マルコフ決定過程・ベルマン方程式
  • 例題を通じて逆強化学習の実装方法
  • 制御分野と機械学習の共通部分
  • 逆強化学習の事例
  • 逆強化学習の応用範囲

プログラム

  1. 逆強化学習の位置づけ・機械学習の基礎
    1. 逆強化学習と機械学習・最適制御の関係
      • 強化学習は制御と関連が強い
      • 逆強化学習と強化学習 (最適制御) と何が違う?
    2. 機械学習の基礎のおさらい
      • 生成的 / 識別的
      • 経験リスク最小化
      • 様々な損失
      • 2クラス分類 / 他クラス分類 / 系列ラベル分類
        • … 構造的なデータに対しても「識別」は定義できる ⇒ 逆強化学習ではどうやって解く?
  2. 逆強化学習の定式化・解法
    1. 強化学習の基礎:マルコフ決定過程、ベルマン方程式
      • 動的システム
      • マルコフ性
      • マルコフ決定過程 / 報酬関数
      • 価値関数 / ベルマン方程式
    2. 逆強化学習の定式化とアルゴリズム
      • 報酬期待値の最大化
      • 損失関数の設定
      • 最大エントロピー逆強化学習
      • 周辺分布の獲得前向き・後ろ向き計算
    3. 逆強化学習を適用しようとすると起きる問題は??
  3. 逆強化学習の適用例・最近の事例
    1. 海外での適用事例、下坂研究室での事例
      • (簡易版) 車線変更
      • 経路選択
      • Zone 30マルコフの加減速モデリング
    2. 連続・高次元化に向けた方向性、深層学習との融合
      • 関数近似の利用、離散化の工夫
      • 連続空間上のIRL:分配関数 (積分計算) の近似がポイント
      • この分野も深層NN、さらにはGANの導入が始まってきている

講師

  • 下坂 正倫
    東京工業大学 情報理工学院 情報工学系
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/11/25 Pythonによる機械学習の基礎と異常検知への適用、実装ポイント オンライン
2024/11/27 ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・ エンジニアリング応用入門 オンライン
2024/11/28 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/11/28 “データサイエンス入門”の入門 オンライン
2024/11/28 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/11/29 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/2 カルマンフィルタの実践 オンライン
2024/12/3 ルールベースと機械学習ベースの画像認識技術 オンライン
2024/12/4 機械学習に基づいた不確実環境下における適応的実験計画 オンライン
2024/12/9 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/11 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/11 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/11 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/12/13 AI/生成AIを活用した研究開発の意思決定と評価軸の考え方 オンライン
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/13 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/13 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/16 AI機械学習の活用・導入のためにこれだけは押さえておきたい数学 超入門 2日間セミナー オンライン
2024/12/16 AI機械学習に的を絞った行列・偏微分・確率密度の超入門 オンライン
2024/12/16 少ないデータによる異常検知技術の導入と活用方法 オンライン