技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

ベイズ最適化を用いた材料探索、実験計画法とその具体例

ベイズ最適化を用いた材料探索、実験計画法とその具体例

~データの集め方、データセットの作成から高分子材料設計への応用例まで~
オンライン 開催

概要

本セミナーでは、ベイズ最適化の概要と「条件最適化」「探索」への応用例、 ガウス過程回帰モデルについて詳しく解説いたします。

開催日

  • 2023年1月20日(金) 10時30分 16時00分

プログラム

第1部 材料データ取得・解析・活用のためのベイズ最適化とスパースモデリング

(2023年1月20日 10:30〜12:00)

  1. マテリアルズ・インフォマティクス概要
    1. AI for Materialsとマテリアル・ゲノムプロジェクト
    2. 機械学習の基礎
    3. 代表的な機械学習応用事例の紹介
    4. 物質・材料データの特徴と注意点
  2. スペクトルに適したEMアルゴリズムによる解析
    1. ピーク検知のための処理フロー
    2. 非線形最小二乗法の困難
    3. EMアルゴリズムによる最尤推定
    4. スペクトル解析のための改良EMアルゴリズム
    5. 解析事例
  3. データ活用:ベイズ最適化の概要と応用
    1. ベイズ最適化でやりたいこと
    2. ベイズ最適化を使った研究事例
    3. ベイズ最適化の作業フロー
      1. 予測曲線を確率的に引く (ガウス過程回帰)
      2. 「活用」と「探索」による候補点探索 (獲得関数)
    • 質疑応答

第2部 ベイズ最適化によるマイクロフロー合成の条件探索

(2023年1月20日 12:50〜14:20)

 深層学習をはじめとする機械学習の利用が様々な分野で進んでいるが、有機化学の分野は実験コストが他分野と比べて高いため、他分野で有効な手法がそのまま有機化学において有用であるとは限らない。ベイズ最適化は実験コストが高い場合に、実験数を抑えつつ、最適解を見逃すことなく同定しうる手法として注目を集めている。
 演者は微小な流路を反応場とするマイクロフロー合成法の開発に取り組んでいるが、その最適条件探索においてベイズ最適化を用いた実例について紹介する。実際にベイズ最適化を使用したことで感じた手法の威力や限界、さらには化学者の役割についても本講座で述べたい。

  1. 機械学習の種類
  2. 過学習とハイパーパラメータの調整について
  3. 線形回帰モデルと非線形回帰モデル
  4. ベイズ最適化について
  5. ベイズ最適化を用いる国内外の最新の研究報告
  6. マイクロフロー合成
  7. ベイズ最適化を駆使するマイクロフロー合成の条件最適化
  8. 機械学習を駆使する研究における化学者の役割
    • 質疑応答

第3部 ベイズ最適化を用いた実験工程の効率化

(2023年1月20日 14:30〜16:00)

 製造業や創薬などの様々な実応用において、実験工程 (計画) を効率化することは重要な課題である。近年、機械学習 (しばしばAIとも呼ばれる) を用いた実験工程の効率化に関する研究が盛んに行われている。
 本講演では、ベイズ最適化と呼ばれる機械学習アルゴリズムを用いて、最適な実験条件を効率的に探索するための方法について紹介します。特に、実験条件がすべて制御できる場合と、一部の条件が制御できない場合のそれぞれにおいて、実応用上重要となる最大化問題と領域推定問題の2つに焦点を当てながら解説いたします。

  1. はじめに
    1. ブラックボックス関数について
    2. ベイズ推測に基づいた実験条件の最適化 (ベイズ最適化) に関して
  2. ベイズ線形モデルとガウス過程回帰モデル
    1. ベイズ線形モデル
    2. ガウス過程回帰モデル
  3. ガウス過程回帰モデルを用いたベイズ最適化
    1. 実験条件のすべてが制御可能変数である場合
      1. 最大化問題に関するベイズ最適化
      2. 領域推定に関するベイズ最適化
    2. 実験条件の一部に制御不能変数がある場合
      1. 制御可能変数に対する最大化問題に関するベイズ最適化
      2. 制御可能変数に対する領域推定に関するベイズ最適化
  4. 関連する話題についての紹介
    1. 複数のブラックボックス関数を扱う場合 (多目的ベイズ最適化)
    2. 実験条件 (入力変数) が非常に多い場合 (高次元ベイズ最適化)
    3. 一度に複数の実験条件で実験を行う場合 (バッチベイズ最適化)
    4. 別に行った実験結果の情報を流用する場合 (マルチタスクベイズ最適化)
    5. 制御不能変数に対する情報が不足している場合 (分布的ロバストなベイズ最適化)
    6. 様々な実応用例に関して
    • 質疑応答

講師

  • 安藤 康伸
    東京工業大学 科学技術創成研究院 化学生命科学研究所
    准教授
  • 布施 新一郎
    名古屋大学 大学院 創薬科学研究科 基盤創薬学専攻
    教授
  • 稲津 佑
    名古屋工業大学 大学院 工学研究科 情報工学専攻
    助教

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 55,000円 (税別) / 60,500円 (税込)
複数名
: 50,000円 (税別) / 55,000円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、1名あたり 50,000円(税別) / 55,000円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 55,000円(税別) / 60,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。

アカデミック割引

  • 1名様あたり 30,000円(税別) / 33,000円(税込)

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

  • 学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院、短期大学、附属病院、高等専門学校および各種学校の教員、生徒
  • 病院などの医療機関・医療関連機関に勤務する医療従事者
  • 文部科学省、経済産業省が設置した独立行政法人に勤務する研究者。理化学研究所、産業技術総合研究所など
  • 公設試験研究機関。地方公共団体に置かれる試験所、研究センター、技術センターなどの機関で、試験研究および企業支援に関する業務に従事する方
  • 支払名義が企業の場合は対象外とさせていただきます。
  • 企業に属し、大学、公的機関に派遣または出向されている方は対象外とさせていただきます。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/12/4 機械学習に基づいた不確実環境下における適応的実験計画 オンライン
2024/12/6 実験計画法の基礎と活用法 オンライン
2024/12/9 Pythonによるデータ解析の基礎と実務への応用 オンライン
2024/12/9 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/11 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/11 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/13 AI/生成AIを活用した研究開発の意思決定と評価軸の考え方 オンライン
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/13 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/13 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/16 AI機械学習の活用・導入のためにこれだけは押さえておきたい数学 超入門 2日間セミナー オンライン
2024/12/16 AI機械学習に的を絞った行列・偏微分・確率密度の超入門 オンライン
2024/12/16 少ないデータによる異常検知技術の導入と活用方法 オンライン
2024/12/17 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2024/12/17 進化計算を利用した多目的最適化技術とその応用 オンライン
2024/12/20 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/23 AI機械学習原理を理解するための数式読み方入門 オンライン
2025/1/7 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/14 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン

関連する出版物