技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

AI・機械学習のための特徴量エンジニアリング

AI・機械学習のための特徴量エンジニアリング

~サンプリング、クレンジング、欠損値補完、次元削除、特徴抽出…~
オンライン 開催

概要

本セミナーでは、機械学習の性能を引き出すための様々なデータに対する前処理の考え方と具体的方法について理解を深めるとともに、AIを有効に活用するための特徴量エンジニアリングの基礎について習得していただきます。

開催日

  • 2021年8月19日(木) 10時30分 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者

プログラム

 様々な分野においてAIの活用が期待されています。特に、現場で発生する様々なデータに対して異常検知や予防保全、因果関係の推論を自動化する試みが進んでいます。しかし、概念実証 (PoC) を何度繰り返しても、期待したような結果にならず、AIの導入を諦めてしまうという声もよく聞きます。その背景には、データの理解や前処理が不十分で、本来の機械学習のポテンシャルを十分引き出すための特徴量が導き出せていないという場合もあります。
 本講義では、機械学習の性能を引き出すための様々なデータに対する前処理の考え方と具体的方法について理解を深めるとともに、AIを有効に活用するための特徴量エンジニアリングの基礎について習得していきます。

  1. イントロダクション
  2. 前処理入門
    1. なぜ前処理が重要か
    2. 特徴量エンジニアリングとは
    3. 機械学習と前処理
  3. データ構造
    1. 基本データ構造
    2. 系列データ
    3. 画像データ
    4. テーブルデータ
    5. カテゴリカルデータ
    6. テキストデータ
    7. その他の型
  4. 前処理技術
    1. サンプリング
    2. クレンジング
    3. オーグメンテーション
    4. スケーリング・正規化・標準化
    5. 型変換
    6. アノマリ除去
    7. 欠損値補完
    8. 次元削減
    9. 特徴抽出
    10. その他の処理
  5. 様々な機械学習における前処理の必要性
    1. ニューラルネットワーク
    2. SVM
    3. アンサンブル
    4. 決定木
    5. その他
  6. 前処理の事例
  7. まとめ
    • 質疑応答

講師

  • 濱上 知樹
    横浜国立大学 大学院 工学研究院 環境情報学府 情報メディア環境学専攻
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 45,000円 (税別) / 49,500円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、1名あたり 45,000円(税別) / 49,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 99,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 148,500円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。

アカデミック割引

  • 1名様あたり 30,000円(税別) / 33,000円(税込)

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

  • 学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院、短期大学、附属病院、高等専門学校および各種学校の教員、生徒
  • 病院などの医療機関・医療関連機関に勤務する医療従事者
  • 文部科学省、経済産業省が設置した独立行政法人に勤務する研究者。理化学研究所、産業技術総合研究所など
  • 公設試験研究機関。地方公共団体に置かれる試験所、研究センター、技術センターなどの機関で、試験研究および企業支援に関する業務に従事する方

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/11/25 Pythonによる機械学習の基礎と異常検知への適用、実装ポイント オンライン
2024/11/27 ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・ エンジニアリング応用入門 オンライン
2024/11/27 医薬品開発に使えるタンパク質の理論的デザイン法とタンパク質のフォールディング予測法 オンライン
2024/11/28 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/11/28 “データサイエンス入門”の入門 オンライン
2024/11/28 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/11/29 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/2 カルマンフィルタの実践 オンライン
2024/12/3 ルールベースと機械学習ベースの画像認識技術 オンライン
2024/12/4 機械学習に基づいた不確実環境下における適応的実験計画 オンライン
2024/12/9 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/11 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/11 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/11 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/12/13 AI/生成AIを活用した研究開発の意思決定と評価軸の考え方 オンライン
2024/12/13 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/13 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/16 AI機械学習の活用・導入のためにこれだけは押さえておきたい数学 超入門 2日間セミナー オンライン
2024/12/16 AI機械学習に的を絞った行列・偏微分・確率密度の超入門 オンライン

関連する出版物

発行年月
2023/12/27 実験の自動化・自律化によるR&Dの効率化と運用方法
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化
1993/3/1 新しいサーボ制御の基礎と実用化技術