技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

少ない学習データでもうまくいく機械学習の適用方法と進め方とそのコツ

少ない学習データでもうまくいく機械学習の適用方法と進め方とそのコツ

~データが少ない、揃わない、精度が悪い… ではどうするのか~
オンライン 開催

概要

本セミナーでは、できるだけ少量の学習データから有益なモデル化や利用が行える機械学習を実現するための手法について、数式やプログラムをほとんど使わずに率直かつ平易に解説いたします。

開催日

  • 2021年6月30日(水) 10時30分 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • 機械学習の考え方
  • 学習データが少ないときの機械学習の適用方法
  • データを水増しして学習する方法

プログラム

 近年、深層学習に代表される機械学習によって多くの問題で高い精度のクラス分類や回帰を実現できることが注目されており、企業の業務へのAI導入が検討されていますが、実際はまだあまり進んでいないのが現状です。その理由の一つが学習データを多数集められないということです。実問題では、何らかの理由で学習データを多く集めることができなかったり、集めること自身が非常に高コストであることや、学習データに偏りがあって学習し辛いことがよくあります。このような場合は深層学習などの機械学習のライブラリをそのまま適用しただけでは必要な精度を得ることができません。
 そこで、本セミナーでは、学習データが少ない状況で機械学習を有効に適用するためのいくつかの方法をご紹介します。

  1. 人工知能の現状と課題
    1. 人工知能の定義と発展の歴史
      • 人工知能とは何か?
      • 考え方の推移など
    2. 人工知能の最近の課題と今後の展望
      • 説明性
      • 精度保証
      • XAI
      • 共進化AIなど
  2. ベースとなる機械学習技術
    1. 教師あり学習・教師なし学習・半教師あり学習
      • SVM
      • 決定木
      • ランダムフォレスト
      • k-平均法など
    2. 深層学習の原理と特徴
      • ニューラルネットワーク
      • 深層学習
      • 問題点など
    3. 進化的機械学習の原理と特徴
      • 進化計算法
      • 進化的機械学習など
  3. 少ない学習データを用いる学習法
    1. データ分布を推定する方法
      • ベイズ最適化
      • EMアルゴリズムなど
    2. 関数最適化問題として解く方法
      • 遺伝的プログラミング (GP)
      • CGP
      • GMAなど
    3. 1クラス学習を用いる方法
      • 1クラスSVM
      • AE
      • CAE
      • VAEなど
    4. 深層回路の構造最適化に基づく方法
      • 深層回路の線形化
      • 進化的最適化など
    5. 転移学習・蒸留・浸透学習を用いる方法
      • 知識の流用による少数学習など
    6. 進化計算法による処理構造の自動構築法
      • 処理構造の進化的最適化
      • セル型回路など
  4. データを水増しして学習する方法
    1. 基礎的なデータ水増し法
      • 学習データに対する変換
      • ノイズ混入など
    2. 特徴空間を用いた水増し法
      • 特徴空間での分布特性の利用など
    3. 学習データを人工的に作る方法
      • CG画像
      • シミュレータの利用など
    4. フェイクデータの作成方法
      • 敵対的生成ネットワーク (GAN) の利用など
    5. クラウドサービスを利用した学習データの収集
      • 人海戦術によるデータ増強など
  5. 企業へのAI導入の実際
    1. AI導入時の注意点
      • 導入時の問題と解決方法など
    2. AI導入を成功させるコツ
      • AI人材の育成方法など
  6. まとめ・AIよろず相談室
    • Q&Aとフリーディスカッションなど

講師

  • 長尾 智晴
    横浜国立大学 大学院 環境情報学府・研究院 情報メディア環境学専攻
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 30,400円 (税別) / 33,440円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込)

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 22,500円(税別) / 24,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 30,400円(税別) / 33,440円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。
  • サイエンス&テクノロジー社の「2名同時申込みで1名分無料」価格を適用しています。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/14 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン
2025/1/15 Python実践データ分析/機械学習 オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/21 MTシステム (MT法) の基礎および異常検知・異常モニタリング・予防保全技術入門 オンライン
2025/1/22 ベイズ推定を用いたデータ解析 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 プロセスインフォマティクスにおけるベイズ最適化の活用法と実施事例 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 特許分析における生成AI/ChatGPT活用と競合他社の弱みの見つけ方 オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン
2025/1/30 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/4 カルマンフィルタの実践 オンライン
2025/2/4 ベイズ推定を用いたデータ解析 オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/7 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/10 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン

関連する出版物

発行年月
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2023/12/27 実験の自動化・自律化によるR&Dの効率化と運用方法
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説