技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

データから本質的な情報を取り出す予測・縮約・分類のための統計・多変量解析 基礎と実際

Zoomを使ったライブ配信セミナー

データから本質的な情報を取り出す予測・縮約・分類のための統計・多変量解析 基礎と実際

~アカデミックな内容は最小限に、製造業の実務で本当に役立つ基礎と手順を解説~
オンライン 開催 PC実習付き

開催日

  • 2021年4月15日(木) 10時30分 17時00分

受講対象者

  • 要素技術、生産システム、品質管理などの分野でデータ分析・統計・多変量解析スキルが必要な方
  • マーケティング、商品企画等で、顧客ニーズ、コンセプトメイキングのためにデータ分析・統計・多変量解析スキルが必要な方
  • 人工知能を活用するために、データの前処理、データの解釈、人工知能の予測能力の評価等の手法を習得したい方
  • 複数の要因によって、目的とする対象がどのように変化するか、予測や説明を行う方法を求めている方
  • 複数の要因があるデータに対して、それら複数項目を代表する総合的な指標を求める (データの縮約) 方法を求めている方
  • 複数のデータ間の複雑な関係を説明する、潜在的な構造を求める方法を求めている方
  • 数多くのデータをグルーピングし、適切に分類、階層化する方法を求めている方

修得知識

  • 実務で使えるデータ分析手法の基礎 → 基本的なデータの要約 (統計量) とグラフ化
  • 統計解析の危うさとグラフによる目視確認の重要性
  • データ分析手法の体系と成果が出やすい手法
  • 多変量解析ソフトウェアの操作方法
  • 複数の要因によって、ある目的とする項目がどのように変化するか、予測や説明を行う方法 → 重回帰分析
  • 複数の要因があるデータに対して、それら複数項目を代表する総合的な指標を求める方法 (データを縮約する方法) → 主成分分析
  • 数多くのデータをグルーピングし、適切に分類、階層化する方法 → クラスター分析
  • 複数のデータ間の複雑な関係を説明する、潜在的な構造を求める方法 → 因子分析 (ただし、製造業の実務使用では適応し難いため、代用手法を解説)

プログラム

 製造業では、多くのデータを取扱いますが、データから価値ある情報を取り出し、解釈するためには各種統計的な解析を使用する必要があります。統計解析、あるいは多変量解析は、データの要約、傾向の確認、原因分析、今後の予測などの解析が行えますが、目的に合わせて適切な手法を選択する必要があります。最近トピックスになっている人工知能に関しても、効率的な学習を行うためには、データの与え方の工夫や、学習に適した形にデータを加工する必要があります。その際にも、前述した統計解析・多変量解析によるデータ分析が必要になります。
 一方で、統計・多変量解析を習得しようとすると、従来は、実務では実際には使用しない内容を無味乾燥な数式で学ぶ必要があります。また、データ分析には統計・多変量解析ソフトウェアが必要になります。しかしながら、統計・多変量解析ソフトウェアは、下記のように2極化しており、簡単に導入・活用するにはためらいがともなう状況です。

  • 無料で使用できる反面、プログラムのような記述が必要な「R」
  • Excelライクで直感的に使用でき、かつ極めて高機能な反面、高額なため「1人1ソフトウェア体制」や「思い立ったら誰でもデータ解析をする体制」には向かない「JMP」「SPSS」「StatWorks」

 本講座では、アカデミックな内容は最小化し、製造業の実務で使う各種データ分析の実践的な方法を中心に講義いたします。また、無味乾燥な数式の解説ではなく、具体的な事例を通して、データ分析の基礎と手順を解説いたします。そして、無料で導入でき、EXCELライクで直感的に使用できる統計解析パッケージソフトウェアを使い、実際にデータ分析の演習を行います。

  1. 実務で使えるデータ分析手法の基礎
    1. 統計解析・多変量解析とは
    2. 基本的なデータ要約方法 – 基本的な統計量
    3. グラフ化による目視確認の重要性
    4. 実務でよく使用する各種グラフ
    5. ソフトウェア紹介
  2. 複数の要因によって、ある目的とする項目がどのように変化するか、予測や説明を行う
    1. 重回帰分析 (回帰式の構築) とは
    2. 重回帰分析の手順、チェックノウハウ
    3. 参考:判別分析
    4. データ分析演習
  3. 数多くのデータをグルーピングし、適切に分類する
    1. クラスター分析 (類似した特徴を持つグループ化とグループの階層化分析) とは
    2. クラスター分析の手順、チェックノウハウ
    3. データ分析演習
  4. 複数の要因があるデータに対して、それら複数項目を代表する総合的な指標を求める
    1. 主成分分析 (データの縮約、データの合成分析) とは
    2. 主成分分析の手順、チェックノウハウ
    3. データ分析演習
  5. 複数のデータ項目間の複雑な関係を説明する、潜在的な構造を求める
    1. 因子分析 (潜在変数の見える化、データの分解分析) とは
    2. 因子分析のエンジニアリング実務上の問題点と対策 (代用手法)
    3. 参考:因子分析の手順、チェックノウハウ
    4. 参考:データ分析デモ (時間があれば)
  6. その他の分析方法
    1. 要因の組合せ最適化を行う方法 →実験計画法 概要
    2. より高度な組合せ最適化方法 →品質工学 (タグチメソッド) 概要
    3. 重回帰式の上位版 →ニューラルネットワークモデル (深層学習) 概要
  7. 質疑応答

講師

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 30,400円 (税別) / 33,440円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込)

持参品

  • ソフトウェア配付・PC演習付きのセミナーです。以下を満たすPCをご用意ください。
    • Windows PC (32bit・64bitいずれも可、OSはWindows7・Windows10のいずれか)
    • Microsoft Excelおよび、以下配付ソフトウェアを事前にインストールしたPC
  • 下記ソフトウェアは、開催1週間前を目安に、受講者に限りDLリンクをお送りします。
    開催3日前時点でExcelファイルが届いていない場合は、お手数ですがご連絡をお願いいたします。
    • 多変量解析ソフトウェア (演習で使用するソフトウェア)
    • 実験計画法 (品質工学) 解析ソフトウェア (参考として6章で紹介)
    • 人工知能ソフトウェア (参考として6章で紹介)
  • 配布するソフトウェアは、事前に演習で使用するWindows PCにインストールしておいてください。
    セミナー当日は、インストールが完了している前提で開始いたします。

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 22,500円(税別) / 24,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 30,400円(税別) / 33,440円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境 をご確認いただき、 ミーティングテスト にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2021/5/13 データから本質的な情報を取り出す予測・縮約・分類のための統計的多変量モデリング オンライン
2021/5/14 Pythonによる機械学習の基礎とポイント オンライン
2021/5/14 金融工学のための数理入門 4日間パック オンライン
2021/5/14 確率論入門の入門 オンライン
2021/5/20 統計的データ処理のための確率統計・線形代数入門 オンライン
2021/5/21 分析法バリデーションの統計解析入門と各パラメータの具体的な計算方法 東京都 会場・オンライン
2021/5/21 自然言語処理の基礎と応用 オンライン
2021/5/24 臨床試験における統計解析入門 オンライン
2021/5/24 ベイズ統計学 入門講座 オンライン
2021/5/24 分析法バリデーション実施のための統計解析の基礎と分析能パラメータの評価基準 オンライン
2021/5/25 高分子材料・製品の寿命予測と劣化加速試験条件の設定方法 オンライン
2021/5/25 確率モデルに基づく確率的画像処理技術入門 オンライン
2021/5/27 機械学習におけるモデル化とその効率化、最適化 オンライン
2021/5/28 1日で学ぶデータサイエンスの基礎知識 オンライン
2021/5/28 賞味期限設定のための統計解析の基本とアレニウス式を用いた加速試験の進め方戦略 オンライン
2021/5/28 初心者のためのPopulation PK/PD入門講座 オンライン
2021/5/28 開発計画を考える上での臨床試験における症例数設定・エンドポイント・effect sizeの考え方 オンライン
2021/5/31 ディープラーニングによる品質検査 (表面・外観検査) と故障診断、欠陥予知への活用 オンライン
2021/6/3 スパースモデリングのマテリアルズインフォマティクスへの活用 オンライン
2021/6/7 実務のための統計学入門 オンライン