技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

スパースモデリング入門

Zoomを使ったライブ配信セミナー

スパースモデリング入門

オンライン 開催 デモ付き

概要

本セミナーでは、おもに統計における正則化線形回帰という視点からスパースモデリングを概観し、多数提案されている主要な発展的手法も解説いたします。
さらに、具体的な問題をスパースモデリングにより定式化して効率的に解決する事例を、簡単なプログラム例とデモを交えて紹介いたします。

開催日

  • 2021年2月16日(火) 10時30分16時30分

修得知識

  • スパースモデリングの基本的な考え方
  • 回帰モデリングの観点からのスパースモデリングの理解
  • 信号処理や自然科学の実問題への適用例

プログラム

 大量のデータに含まれる少数の本当に重要なデータを抽出したい、あるいは少数の観測から背後にある多数のパラメタを推定したい、といったニーズは様々な産業分野で日々産まれ続けている。計測技術の高度化やストレージの低価格化、折しものビッグデータブームに後押しされ、たくさんのセンサーによる計測結果を記録したはよいものの、その中から有用な情報を取り出すことが出来ないということも多い。
 スパースモデリングは、「同じことがらを説明できるならば、説明に用いるモデルは簡潔な方がよい」という、合理的な先見知識を導入することで、大量のセンサーデータに埋もれた本質的に重要な信号を取り出したり、未知のパラメタの数よりもはるかに少ない回数の計測データを用いてパラメタ同定を行ったりするための技術の総称であり、既に統計的データ解析、機械学習の現場において必要不可欠な方法論となっている。
 本セミナーでは、おもに統計における正則化線形回帰という視点からスパースモデリングを概観し、多数提案されている主要な発展的手法も解説する。さらに、具体的な問題をスパースモデリングにより定式化して効率的に解決する事例を、簡単なプログラム例とデモを交えて紹介する。

  1. 確率統計と線形代数の準備
    1. 確率分布、密度関数
    2. 行列のランク、ベクトルのノルム
  2. スパースモデリングの導入
    1. 重回帰分析
    2. 正則化回帰
    3. Lasso:L1正則化線形回帰
  3. 発展的な手法
    1. 様々なスパース性
    2. 正則化とバイアス
    3. 一般化線形モデル
  4. オープンソースライブラリを利用した分析例
    1. glmnetによる正則化回帰・判別の例
    2. Fused Lassoによる時系列処理の例
    3. Graphical Lassoによる共分散構造選択の例
  5. まとめ
    • 質疑応答

講師

  • 日野 英逸
    大学共同利用機関法人 情報・システム研究機構 統計数理研究所 モデリング研究系
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 50,600円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境 をご確認いただき、 ミーティングテスト にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。電子媒体での配布はございません。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/2/26 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/26 ヒューマンセンシングの基礎と製品・サービスへの活用法 オンライン
2026/2/26 実務に役立つ統計解析の基本と活用 オンライン
2026/2/26 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/2/27 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/27 ヒューマンセンシングの基礎と製品・サービスへの活用法 オンライン
2026/2/27 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/3/5 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/3/9 ベイズ統計モデリングの基本的な考え方とモデルの立て方、結果の解釈 オンライン
2026/3/10 Pythonを用いた高分子材料の画像解析入門 オンライン
2026/3/11 実測データとデータ解析を統合した化学プロセス設計・最適化 オンライン
2026/3/12 Excelで始める実践データ分析 オンライン
2026/3/13 開発・生産現場で諸課題を解決に導くデータ駆動型手法 / ディープニューラルネットワークモデル / MTシステムの基礎と応用 オンライン
2026/3/16 小規模実験の自動化による研究開発の効率化と再現性向上 オンライン
2026/3/19 AIの選択・精度・効率・構造・コストなどの最適化原理 オンライン
2026/3/23 実測データとデータ解析を統合した化学プロセス設計・最適化 オンライン
2026/3/31 Pythonで学ぶデータ解析・機械学習を理解するための線形代数入門 オンライン
2026/4/17 因子ごとの最適条件を少ない実験回数で見つける統計的手法「実験計画法」 & 汎用的インフォマティクス「非線形実験計画法」 オンライン