技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

人工知能を用いた技術文献・特許調査と研究開発業務への活用

人工知能を用いた技術文献・特許調査と研究開発業務への活用

東京都 開催 会場 開催

開催日

  • 2019年3月26日(火) 10時00分 17時15分

プログラム

第1部 商品コンセプトの創出を行う人工知能の研究と実用化事例

(2019年3月26日 10:00〜11:30)

 多くの事業は練りに練ったコンセプトを具現化したものであるため、優れたコンセプトの創出はイノベーションの鍵を握る。講演者はコンセプトの創出を自動化する人工知能技術を研究し、複数の企業で実用化してきた。
 本講座では、創造性と人工知能の関係について概観したのち、講演者の技術と実用化事例を述べ、最後に講演者の人工知能を用いたワークショップの簡易版を体験していただく

  1. 創造性の自動化を目指した研究の動向
  2. コンセプト自動生成の重要性と研究動向
  3. 講演者の研究しているコンセプト自動生成技術
    1. コンピューターで扱えるコンセプトの形式
    2. 成功したコンセプトをコンピューターが学ぶ手法
    3. 学習済みのコンピューターによるコンセプトの自動生成
    4. コンセプト自動生成技術の評価結果
    5. 過去のヒット商品を表す文書データによる評価
  4. 実用化事例とコンセプト生成以外への応用例
    1. アイデア創出ワークショップ
    2. スマートフォンアプリによるアイデア創出
    3. 意外性のある小説のストーリー生成支援
    4. 目を惹く広告キャッチコピーの生成支援
    5. 利用者の声
  5. ワークショップの体験 (短時間ですが実際に簡易版のワークショップにご参加いただけます)
  6. まとめ
    • 質疑応答

第2部 技術文献・特許調査での人工知能導入活用の方法

(2019年3月26日 12:15〜13:45)

 近年、深層学習をはじめとする機械学習 (人工知能) 技術の発達により、 様々な分野で機械学習を用いた業務の効率化が進められている。 知財分野もその例外ではなく、人工知能を利用して特許関連業務を効率化する 研究や製品、サービスの展開がはじまっている。 本講演では、「先行技術調査/SDI (Selective Dissemination of Information) 」や 「開発戦略の立案を支援するための特許調査」に対して人工知能を活用する方法について紹介する。

  1. はじめに (基礎知識)
    1. 人工知能について
    2. 自然言語処理について
      1. 自然言語処理の難しさ
      2. 自然言語処理の一般的な前処理
  2. 特許/技術文献調査
    1. 特許情報について
    2. 特許調査について
      1. 特許のライフサイクルと調査
      2. 調査のタイプ
      3. 特許調査に必要な3つの目
      4. 特許調査へのAI活用
  3. 『虫の目』AI活用 (先行技術調査等の支援)
    1. 特許の自動ランキング
    2. 特許の自動分類
      1. AIを用いたSDI
      2. 特許検索の評価
      3. AIのメンテナンス
    3. 請求項の可読性向上
  4. 『鳥の目』AI活用 (開発戦略立案支援)
    1. 技術動向調査へのAI活用
      1. 様々なパテントマップツール
      2. AIを用いた出願人のポジション分析
  5. 『魚の目』AI活用 (開発戦略立案支援)
    • 新規用途探索へのAI活用
  6. まとめ
    • 質疑応答

第3部 機械学習を用いた効率的な特許調査

(2019年3月26日 14:00〜17:15)

  1. 機械学習の概要と特許調査への応用事例紹介 [安藤氏]
    1. 調査目的×アルゴリズム×ドメインデータ
    2. 機械学習概要 (分類、クラスタリング、回帰、次元圧縮)
    3. 特許調査への機械学習適応時の留意点
    4. 先行技術調査の流れ (進め方)
    5. doc2vecによる公報 (文書) 単位の類似度計算
    6. doc2vecによる発明の要素 (文) 単位の類似度計算
  2. Deep Learningの応用事例 [安藤氏]
    1. Deep Learningの基礎検討
    2. Deep Learningによる文書分類
    3. 単語ベクトルの合成による文書のベクトル化検討 (3種類)
  3. 自分でできるキーワード抽出・活用ツール紹介 [安藤氏]
    1. word2vecによる類似語抽出
    2. termextractによる専門用語 (キーワード) 自動抽出
    3. Cytoscapeによる文脈語のネットワーク分析
  4. Pythonで始める機械学習 [西尾氏]
    1. Python環境の構築
      • Anaconda
      • AWS
      • MeCab
    2. Kerasチュートリアルによる機械学習
      • MNIST
      • CNN・RNN
    3. 自作特許データデータセットによる解析
      • 2値分類
      • 多値分類
    • 質疑応答

講師

  • 須藤 明人
    静岡大学 情報学部 情報科学科
    講師
  • 太田 貴久
    昭和電工 株式会社 知的財産部 知的財産グループ 情報チーム
  • 安藤 俊幸
    アジア特許情報研究会
  • 西尾 潤
    株式会社ユポ・コーポレーション 市場開発部

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 60,000円 (税別) / 64,800円 (税込)
複数名
: 55,000円 (税別) / 59,400円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 55,000円(税別) / 59,400円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 60,000円(税別) / 64,800円(税込)
    • 2名様でお申し込みの場合 : 2名で 110,000円(税別) / 118,800円(税込)
    • 3名様でお申し込みの場合 : 3名で 165,000円(税別) / 178,200円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/2/17 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/19 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/2/20 マイオリジナルChatGPTへのカスタマイズの仕方、育成ノウハウ オンライン
2025/2/20 人工知能技術:MTシステム 超入門 オンライン
2025/2/20 費用対効果 (日本版HTA) 評価の基礎講座 オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/21 CMOSイメージセンサの基礎講座 オンライン
2025/2/25 AI・LLMの学習時間短縮と性能、回答精度向上 オンライン
2025/2/25 反応装置・プロセス設計の基礎とスケールアップの留意点 オンライン
2025/2/25 インドの医療機器ビジネスの現状と関連法規の留意点 オンライン
2025/2/26 Vision Transformerの仕組みとBEV Perception オンライン
2025/2/26 ChatGPTによる多変量解析の進め方 オンライン
2025/2/26 ノウハウの秘匿化戦略と先使用権の立証、実践ポイント オンライン
2025/2/26 進歩性の意味、理解できていますか? オンライン
2025/2/26 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン
2025/2/27 医薬品CMC・製造におけるAI・機械学習・データ活用の課題と導入のポイント オンライン
2025/2/28 競合他社に優位に立つための特許情報解析 オンライン
2025/2/28 医薬品の知的財産制度をふまえた特許戦略構築と知財デュー・デリジェンス/知財価値評価のポイント オンライン

関連する出版物

発行年月
2009/5/25 三菱化学と住友化学と三井化学 分析 技術開発実態分析調査報告書
2009/5/25 三菱化学と住友化学と三井化学 分析 技術開発実態分析調査報告書 (PDF版)
2009/5/20 日本電気と富士通2社分析 技術開発実態分析調査報告書 (PDF版)
2009/5/20 日本電気と富士通2社分析 技術開発実態分析調査報告書
2009/4/20 富士フイルムホールディングスグループ分析 技術開発実態分析調査報告書 (PDF版)
2009/4/20 ロボット制御技術 技術開発実態分析調査報告書 (PDF版)
2009/4/20 ロボット制御技術 技術開発実態分析調査報告書
2009/4/20 富士フイルムホールディングスグループ分析 技術開発実態分析調査報告書
2009/4/5 洗浄剤 技術開発実態分析調査報告書
2009/4/5 化粧品 技術開発実態分析調査報告書 (PDF版)
2009/4/5 化粧品 技術開発実態分析調査報告書
2009/4/5 洗浄剤 技術開発実態分析調査報告書 (PDF版)
2009/3/25 空調機 技術開発実態分析調査報告書 (PDF版)
2009/3/25 空調機 技術開発実態分析調査報告書
2009/3/15 液晶ディスプレイ 技術開発実態分析調査報告書 (PDF版)
2009/3/15 液晶ディスプレイ 技術開発実態分析調査報告書
2009/2/25 オリンパスとニコン分析 技術開発実態分析調査報告書 (PDF版)
2009/2/25 オリンパスとニコン分析 技術開発実態分析調査報告書
2009/2/25 ソニー分析 技術開発実態分析調査報告書 (PDF版)
2009/2/25 ソニー分析 技術開発実態分析調査報告書