技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

TensorFlowで始めるAI導入とビジネス活用

TensorFlowで始めるAI導入とビジネス活用

東京都 開催 会場 開催

概要

 今やAI技術の主流となっているディープラーニングでは、ニューロンの働きを疑似的に多重化したニューラルネットワークを利用しています。
 本セミナーでは、AI技術の概要から始めてディープラーニングとはどのようなものなのか、そしてGoogle社のディープラーニング (深層学習) フレームワークであるTensorFlowの機能および使い方に解説を進めます。その後、TensorFlow の稼働環境を構築して、稼働環境上でのサンプル実行とサンプル内容の解説へと進めていき、TensorFlow のディープラーニングを実現するコード記述スタイルが理解できるようにしていきます。

開催日

  • 2018年9月11日(火) 10時30分16時30分

受講対象者

  • ニューラルネットワークによるディープラーニングについて、理論およびアプローチ方式について知りたい方
  • GoogleのTensorFlowでディープラーニングのプログラミングを行ってみたい方
  • TensorFlowを使用したディープラーニングプログラミングでどのような応用事例があるのか知りたい方
  • 数値予測、画像認識、音声認識、自然言語処理などの開発に興味がある方および仕事で関係する方
  • AIビジネスに興味がある方

修得知識

  • ディープラーニングについての理論の理解
  • TensorFlowを使用した、Python言語によるプログラム記述
  • TensorFlowの応用例
  • AIビジネスの概要

プログラム

  1. AI利用の現状
    1. 人工知能に何を期待するか
  2. 人工知能ができること12選!
    1. 起業家が知っておくべきビジネスへの活用法
      1. 見て判断する (画像解析分野)
      2. 聴いて判断する (音声解析分野)
      3. 言葉を操る (自然言語処理分野)
      4. クリエイターになる
      5. まとめ
      6. 人工知能技術のビジネス活用概況
  3. 使用される基礎数学
    1. 配列 / 行列の内積 / 対数 / 微分 / 偏微分
  4. Python言語の基礎
    1. 算術演算 / データ型 / 変数 / リスト / ディクショナリ / ブーリアン / if文 / for文 / 関数 / クラス / コンストラクタ / 継承 / NumPy / 行列の内積 / ブロードキャスト
  5. Deep Learning (深層学習、DL)
    1. 機械学習とディープラーニング
    2. 人工知能、機械学習、Deep Learning
  6. パーセプトロン
    1. 単純パーセプトロン
    2. 多層パーセプトロン
    3. 線型分離可能
    4. 線型分離不可能
    5. 線形関数と非線形関数
  7. Neural Network (ニューラルネットワーク)
    1. ニューラルネットワークとその表現
    2. コンピュータに人間のような学習をさせる
    3. ニューロンはいつ発火するのか?
      1. One – Hot – Vector
      2. ニューラルネットワークの利点と欠点
  8. 活性化関数 (Activation function)
    1. ステップ関数
    2. シグモイド関数
    3. ランプ関数ReLU
    4. 恒等関数
    5. ソフトマックス関数
    6. 回帰問題と分類問題
    7. 線形回帰
    8. ロジスティック回帰
  9. TensorFlow
    1. TensorFlowとは
    2. TensorFlowプログラミング
      1. GradientDescentOptimizer / 線形回帰 / サンプル / 相関と回帰 / 損失関数 (Loss Function) / Gradient descent / 勾配降下法
  10. 主なニューラルネットワーク
    1. フィードフォワードニューラルネットワーク (Feedforward Neural Network:NN)
      • 最初に考案された、単純な構造の人工ニューラルネットワークモデル。ネットワークにループする結合を持たず、入力ノード→中間ノード→出力ノードというように単一方向へのみ信号が伝播するものを指す。
      • MNIST
    2. 畳み込みニューラルネットワーク (Convolutional NN:CNN)
      • 畳み込み構造を持つ。空間上での位置関係に意味のあるデータのモデル化に有効 (例:画像処理)
    3. 再帰ニューラルネットワーク (Recurrent NN=RNN)
      • 再帰的部分構造を持つ。木構造を持つデータのモデル化に有効 (例:自然言語処理)

講師

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 49,680円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/11/25 Pythonによるデータ解析の基礎と実務への応用 (製造プロセス/実験計画) オンライン
2025/11/26 0からのAIエージェントとデータ分析 オンライン
2025/11/26 Pythonによるデータ解析の基礎と実務への応用 (製造プロセス/実験計画) オンライン
2025/11/27 0からのAIエージェントとデータ分析 オンライン
2025/11/28 Pythonと生成AIによるデータ分析入門 オンライン
2025/12/3 生成AI活用による革新的学習法 オンライン
2025/12/3 点群レジストレーションとオブジェクト認識 オンライン
2025/12/5 スモールデータ解析の方法と実問題解決への応用 オンライン
2025/12/5 少ないデータでも使える機械学習・異常検知の基礎とインフラ・製造分野への応用 オンライン
2025/12/8 少ないデータでも使える機械学習・異常検知の基礎とインフラ・製造分野への応用 オンライン
2025/12/9 カルマンフィルタの実践 オンライン
2025/12/10 AI特許調査ツールの選定基準と導入、運用のポイント オンライン
2025/12/11 AI特許調査ツールの選定基準と導入、運用のポイント オンライン
2025/12/12 マテリアルズ・インフォマティクスのための実験データ統合、一元化とデータベースの構築、効果的な活用法 オンライン
2025/12/15 R&D部門向け生成AI活用ツール徹底比較と導入指針 オンライン
2025/12/16 第3世代のニューラルネットワーク "Spiking Neural Networks" の基礎と未来 オンライン
2025/12/16 ChatGPT・Pythonを活用した業務効率化・自動化のポイント オンライン
2025/12/17 ディジタル信号処理による雑音・ノイズの低減/除去技術とその応用実例 オンライン
2025/12/17 ChatGPT・Pythonを活用した業務効率化・自動化のポイント オンライン
2025/12/18 粉体・流体シミュレーションと機械学習による濾過プロセスの最適化 オンライン

関連する出版物

発行年月
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/11/21 ソフトウエア業界20社
2022/11/21 ソフトウエア業界20社 (CD-ROM版)
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2021/3/15 QRコード決済 (CD-ROM版)
2021/3/15 QRコード決済
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用