技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

説明可能AI (XAI:explainable AI) の作り方とAIの業務への導入方法

説明可能AI (XAI:explainable AI) の作り方とAIの業務への導入方法

~機械学習の説明性向上・精度向上の方法と失敗しないAI導入のコツ~
オンライン 開催

概要

本セミナーでは、最近特に必要性が注目されている「説明できるAI」について、深層学習などのブラックボックス機械学習の説明性向上、決定木などのホワイトボックス機械学習の精度向上の方法、次世代AIである進化的機械学習、企業へのAI導入を成功させるコツについて平易に解説いたします。

開催日

  • 2024年3月21日(木) 10時30分 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

プログラム

  1. 人工知能と機械学習
    1. 人工知能とは何か? – 定義・考え方の推移など –
    2. 機械学習概論 – 説明/事例に基づく学習など –
  2. 深層学習 (ディープラーニング) の現状と課題
    1. ニューラルネットワーク概論 – NNの原理と学習の本質 –
    2. 深層学習の基礎と最近の手法 – 深層学習の考え方・長所・短所 –
    3. 最近のAIの課題と説明できるAI:XAI – 現状のAIの課題と解決策 –
  3. ブラックボックス系機械学習のXAI
    1. 学習済みの深層回路の可視化 – Grad – CAM・LIMEなど –
    2. 特徴空間の自動構築と可視化 – AE・CAE・VAE・UMAPなどによる次元圧縮 –
    3. 可視化を前提とした深層学習 – GCM・判断根拠の提示 –
    4. 深層回路の構造単純化・最適化法 – 進化計算法・勾配降下による方法 –
    5. 転移学習と浸透学習 – 知識の転用による学習 –
  4. ホワイトボックス系機械学習のXAI
    1. 特徴量の最適化による精度向上 – SVMなどの特徴量の最適化 –
    2. 処理過程が説明できる処理の自動構築 – 処理ユニットの組合せ最適化 –
    3. 決定木などの処理の言葉による説明 – ルール集合による説明 –
    4. 小規模かつ高性能な回路の自動構築 – セル型回路の利用など –
  5. AIの業務への導入方法
    1. AI導入時の注意点 – 課題と解決策 –
    2. AI人材の育成方法 – どの方法がベストか? –
  6. まとめ・AIよろず相談室
    • 質疑応答とフリーディスカッション

付録

  • 付録1: 代表的な機械学習法
  • 付録2: 進化計算法の原理と特徴
  • 付録3: 横浜国立大学 長尾研究室のご紹介

講師

  • 長尾 智晴
    横浜国立大学 大学院 環境情報学府・研究院 情報メディア環境学専攻
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 49,000円 (税別) / 53,900円 (税込)
1口
: 60,000円 (税別) / 66,000円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/4/15 少ないデータに対する機械学習、深層学習の適用 オンライン
2024/4/17 ルールベースと機械学習ベースの画像認識技術 オンライン
2024/4/18 生成AIをめぐる著作権問題の最前線 東京都 会場・オンライン
2024/4/22 3Dセンサの測距原理とその応用 (1) 東京都 会場
2024/4/24 脳波計測・処理・解析・機械学習の基礎と応用および脳波データの活用方法 オンライン
2024/4/25 カルマンフィルタの実践 オンライン
2024/4/26 ExcelとPythonによる多変量解析 超入門 オンライン
2024/4/26 VSLAMの概要とAR Foundationを用いた実装演習 オンライン
2024/4/26 少ないデータに対する機械学習、深層学習の適用 オンライン
2024/4/26 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2024/5/2 脳波計測・処理・解析・機械学習の基礎と応用および脳波データの活用方法 オンライン
2024/5/8 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2024/5/17 スパース推定の本質の理解と実装応用技術への展開 オンライン
2024/5/20 3Dセンサの測距原理とその応用 (2) 東京都 会場
2024/5/21 基礎からわかる生体信号の計測と情報解析・データマイニングのコツ オンライン
2024/5/23 ベイズ統計から学ぶ統計的機械学習 オンライン
2024/5/23 3次元モデリング/自由視点画像生成のための「NeRF」の基礎 オンライン
2024/5/24 マテリアルインフォマティクスの材料開発への適用と活用事例 オンライン
2024/5/24 画像認識のためのディープラーニングとモデルの軽量化 オンライン
2024/5/27 機械学習による適応的実験計画 オンライン

関連する出版物

発行年月
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2016/1/20 画像ワーピング技術とその応用
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書 (CD-ROM版)
2015/8/17 防犯・監視カメラ〔2015年版〕 技術開発実態分析調査報告書