技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Pythonではじめる機械学習入門講座

Pythonではじめる機械学習入門講座

~Windows, Mac, Linux 実習対応~
オンライン 開催 PC実習付き

開催日

  • 2023年1月18日(水) 10時30分16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • Pythonの基本的なコーディング方法
  • Pythonの各種ライブラリの活用方法
  • 代表的な機械学習 (教師あり学習,教師なし学習) の基礎理論
  • 機械学習ライブラリscikit-learnを活用した機械学習アルゴリズムの実装方法
  • 機械学習によるデータ処理・分析・可視化方法

プログラム

 機械学習の入門講座 (セミナー) は、巷にたくさんありますが、理論と実践が揃って、はじめて現場で使える技術となります。
 本セミナーでは、機械学習の理論的側面のみではなく、コンピュータを用いた実践演習を通して、理解を深めていきます。同時に、実践演習では、最近様々な分野で、注目を集めているコンピュータ言語Pythonと機械学習系ライブラリ (scikit-learn) を用います。

  1. はじめに
    1. 講師自己紹介
    2. セミナーの狙い
  2. 演習環境の確認
    1. Pythonの実行環境の確認
    2. 各種ライブラリ (NumPy,SciPy,matplotlib,scikit-learn) の実行環境の確認
    3. 統合開発環境Spyderの実行環境の確認
    4. Pythonの実行方法 (インタプリタ,コマンド渡し,統合開発環境)
  3. Python入門講座
    1. Pythonの特徴
    2. Pythonの基本文法
    3. コーディング方法 (統合開発環境Spyderの使い方含む)
    4. 各種ライブラリの使い方
      • NumPy
      • SciPy
      • matplotlib
      • scikit-learnなど
    5. 機械学習アルゴリズムの実装方法
    6. サンプルコードを用いた実践演習
    7. 参考書・情報源の紹介
  4. 機械学習概論
    1. 機械学習の概要
    2. 三大学習法
      • 教師あり学習
      • 教師なし学習
      • 強化学習
    3. 機械学習データセットの紹介
    4. 機械学習におけるデータの著作権
    5. 専門書・参考書の紹介
  5. 教師あり学習
    1. 教師あり学習の概要
    2. クラス分類と回帰
    3. 過剰適合 (過学習) と適合不足 (学習不足)
    4. モデル複雑度と精度
    5. 多クラス分類
    6. 各種教師あり学習アルゴリズムの基礎理論と実践演習
      1. k-最近傍法
        • クラス分類
        • 回帰
      2. 線形モデル
        • 線形回帰
        • Ridge回帰
        • Lasso回帰
        • ロジスティック回帰
      3. サポートベクトルマシン
        • 線形モデル
        • 非線形モデル
      4. 決定木
      5. アンサンブル学習
        • ランダムフォレスト
        • アダブースト
    7. クラス分類の性能指標
  6. 教師なし学習
    1. 教師なし学習の概要
    2. 次元削減と特徴量抽出
    3. 各種教師なし学習アルゴリズムの基礎理論と実践演習
      1. 主成分分析 (次元削減)
      2. k-平均法 (クラスタリング)
      3. 凝集型クラスタリング
      4. DBSCAN (クラスタリング)
    4. クラスタリングの性能指標
  7. 実装上の注意事項
    1. データの前処理 (スケール変換など)
    2. テスト誤差の最小化 (k分割交差検証)
    3. ハイパパラメータの最適化
      • グリッドサーチ
      • ランダムサーチ
    4. 実データの読み込み方法
  8. まとめと質疑応答

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込) (案内をご希望の場合に限ります)

持参品 等

本セミナーでは、演習を行いますので、以下の条件を満たしたノートパソコンを持参して下さい。

  • プラットフォームは、Windows、Linux、MacOSを問いません。
  • 演習環境を統一したいので、事前にMinicondaを用いて、Python 3.x (バージョン3系) をインストールしておいて下さい。
  • Minicondaを利用すると、演習で必要な標準・外部ライブラリがほとんど自動インストールされます。
    ただし、統合開発環境Spyder、機械学習ライブラリscikit-learn、および可視化ライブラリseabornは、追加インストールする必要があります。
    これらのインストール方法は、Windowsの場合、Anaconda Prompt、macOSやLinuxの場合、ターミナルを開き、コマンドラインより下記のコマンドを入力して個別にインストールしてください。
    • conda install spyder
    • conda install scikit-learn
    • conda install seaborn
  • 演習で使用するサンプルコードは,セミナー開催前に配布いたします.
  • 教師あり学習、教師なし学習とも、「各種学習アルゴリズムの基礎理論と実践演習」では、当日の進行状況に応じて、すべての手法が取り上げられない可能性があります。

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。

「案内の希望」をご選択いただいた場合、1名様 40,000円(税別) / 44,000円(税込) で受講いただけます。
複数名で同時に申込いただいた場合、1名様につき 25,000円(税別) / 27,500円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 40,000円(税別) / 44,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 50,000円(税別) / 55,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 75,000円(税別) / 82,500円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/7/15 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/16 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/22 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/23 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/23 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/24 外観検査のデジタル化・自動化 オンライン
2025/7/24 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/24 レーザー加工分野における機械学習の活用手法 : 特に少ない実験データ数を用いた場合 オンライン
2025/7/25 エッジコンピューティングの基礎と効果的な活用法 オンライン
2025/7/25 レーザー加工分野における機械学習の活用手法 : 特に少ない実験データ数を用いた場合 オンライン
2025/7/28 外観検査のデジタル化・自動化 オンライン
2025/7/29 Pythonによる化学プロセス設計の基礎と活用 オンライン
2025/7/29 生成AIやGPTを使用した特許情報分析とデータ活用のポイント オンライン
2025/7/30 Pythonを利用したデータ分析の基礎講座 オンライン
2025/7/30 ケモインフォマティクスと機械学習による化学データ解析 オンライン
2025/7/30 生成AIやGPTを使用した特許情報分析とデータ活用のポイント オンライン
2025/7/31 センサから取得した時系列データの処理・解析技術と機械学習の適用 オンライン
2025/7/31 スモールデータ解析の方法と実問題解決への応用 オンライン
2025/7/31 Pythonを利用したデータ分析の基礎講座 オンライン
2025/7/31 ケモインフォマティクスと機械学習による化学データ解析 オンライン

関連する出版物

発行年月
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/11/21 ソフトウエア業界20社 (CD-ROM版)
2022/11/21 ソフトウエア業界20社
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2021/3/15 QRコード決済
2021/3/15 QRコード決済 (CD-ROM版)
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用