技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

畳み込みニューラルネットワークの基礎と画像認識への応用・判断根拠の理解

畳み込みニューラルネットワークの基礎と画像認識への応用・判断根拠の理解

~CNN:Convolutional Neural Network~
オンライン 開催

開催日

  • 2021年6月17日(木) 10時30分 17時00分

プログラム

 深層学習の代表的な手法である畳み込みニューラルネットワークは画像認識分野で様々なタスクへの応用が進んでいる。
 本講義では、畳み込みニューラルネットワークの基礎と画像認識分野における応用事例について説明する。また、畳み込みニューラルネットワークの判断根拠の視覚的説明や、実装に向けた環境やディープラーニングフレームワークによるサンプルコードの説明など実践的に活用できる内容を網羅的に説明する。

  1. ディープラーニングの現在
  2. 畳み込みニューラルネットワーク (CNN:Convolutional Neural Networks)
    1. 畳み込み層
    2. プーリング層
    3. 全結合層
    4. 出力層
  3. 畳み込みニューラルネットワークの学習
    1. 誤差逆伝播法
    2. 最適化法
      • SGD
      • Adam
      • RMSProp
  4. ネットワーク構造
    1. AlexNet
    2. VGG
    3. GoogLeNet
    4. ResNet
    5. DenseNet
  5. 汎用性を向上させるためのテクニック
    1. Dropout
    2. Batch Normalization
    3. Stochastic Depth
    4. Shake-shake Regularization
    5. データ拡張
      • Mix up
      • Cut out等
  6. 物体検出への応用
    1. R-CNN
    2. Fast R-CNN
    3. Faster R-CNN
    4. YOLO
    5. SSD
    6. DSSD
  7. セグメンテーションへの応用
    1. FCN
    2. SegNet
    3. U-Net
    4. PSP Net
  8. 姿勢推定への応用
    1. Deep Convolutional Pose Machines
    2. Part Affinity Field
  9. ネットワークの可視化・視覚的説明
    1. CAM
    2. CAM Grad
    3. Attention Branch Network他
  10. ディープラーニングのフレームワーク
    1. Chainerによる実装
    2. Pytorchによる実装
    3. Neural Network Console等

講師

  • 山下 隆義
    中部大学 工学部 情報工学科
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/11/25 Pythonによる機械学習の基礎と異常検知への適用、実装ポイント オンライン
2024/11/26 Pythonによるデータ解析の基礎と実務への応用 オンライン
2024/11/27 ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・ エンジニアリング応用入門 オンライン
2024/11/28 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/11/28 “データサイエンス入門”の入門 オンライン
2024/11/28 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/11/29 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/3 ルールベースと機械学習ベースの画像認識技術 オンライン
2024/12/9 Pythonによるデータ解析の基礎と実務への応用 オンライン
2024/12/9 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/11 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/11 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/11 音・画像情報処理技術の基礎と認識・検査システムへの応用 オンライン
2024/12/12 ライトフィールド技術の原理と応用および最新技術動向 オンライン
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/13 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン
2024/12/13 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/20 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/24 Pythonを使った時系列データ解析入門 オンライン
2024/12/25 ディジタル信号処理による雑音の低減/除去、ノイズキャンセリング技術とその応用 オンライン