技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

データ処理を的確に行うための製造業におけるディープラーニングの活用とデータ処理の進め方

Zoomを使ったライブ配信セミナー

データ処理を的確に行うための製造業におけるディープラーニングの活用とデータ処理の進め方

オンライン 開催

概要

本セミナーでは、機械学習、ディープラーニングの概要を解説いたします。
また、画像 (分類) 、音 (異常検知) 、センサーデータ等、それぞれの例で解説いたしますので、それぞれがどのように取り扱われるか、注意点は何かを具体的に解説いたします。

開催日

  • 2020年11月27日(金) 10時30分 16時30分

プログラム

 製造業での課題解決に対して、機械学習・ディープラーニングを使用する際の、基本、注意事項を1日で概観できます。まず、機械学習の基本とディープラーニングの基本を極力数式なしで説明します。その後、講師が実際のデータを操作することで、データをどう扱うかを学習していきます。画像 (分類) 、音 (異常検知) 、センサーデータ等、それぞれの例で解説しますので、それぞれがどのように取り扱われるか、注意点は何か、が具体的に学習できます。
 また、受講者でノートPCを用意いただければ、事前に環境設定プログラム、サンプルプログラムを配布しますので、自身でも動作を確認することも可能です。実際にデータを取り扱われる方、製造業での課題解決に機械学習・ディープラーニングを活用する最初の1歩となります。

  1. 機械学習/ディープラーニング概観
    1. データ分析と統計
  2. 機械学習/ディープラーニングを行う際に必要なデータ処理の基本
    1. データの定義
    2. 扱うデータの特性を把握する
      1. 時間軸/場所の考慮
      2. 画像
      3. センサー (時系列) データ
      4. その他 (言語)
    3. 特徴量エンジニアリング
      1. 特徴量エンジニアリングとは何か
      2. 具体例
  3. 機械学習の基礎と実践
    1. 機械学習の基本
      1. データがモデルをつくる
    2. 学習の種類
      1. 教師あり学習の基本
      2. 教師なし学習の基本
    3. 結果の分類
      1. 回帰
      2. クラス分類
    4. 製造業でのサンプル
      1. 画像データによる傷の検知
      2. 音データ処理による異常検知
      3. センサーデータ処理による時系列データ処理
  4. ディープラーニングの基礎と実践
    1. ディープラーニングの基本
      1. 基本的な仕組み
      2. ほとんど数式なしの誤差逆伝播理解
    2. 製造業でのサンプル
      1. CNNによる画像データによる傷の検出
      2. RNNによる音データ処理による異常検知
      3. RNNによるセンサーデータ処理による時系列データ処理
  5. 製造業と機械学習
    1. 機械学習による課題解決
      1. PoCへの取り組み (なるべく小さな範囲で)
      2. PoCからソリューションへ
    2. 精度はどこまで求めるか
      1. 精度は100%にはならない
      2. 運用も含めた 100%を目指す

講師

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)

案内割引について

シーエムシーリサーチからの案内をご希望の方は、割引特典を受けられます。

  • Eメール案内を希望する方 : 1名様あたり 40,000円(税別) / 44,000円(税込)
  • Eメール案内を希望しない方 : 1名様あたり 50,000円(税別) / 55,000円(税込)

アカデミック割引

  • 1名様あたり 24,000円(税別) / 26,400円(税込)

学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院の教員、学生に限ります。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境 をご確認いただき、 ミーティングテスト にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。電子媒体での配布はございません。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/11 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/16 異常検知・学習データ作成のための生成AI活用 オンライン
2025/4/16 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/17 画像認識のためのディープラーニングとモデルの軽量化 オンライン
2025/4/17 スパース推定の基礎、本質の把握・理解と実装応用技術への展開 オンライン
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 ベイズ推定を用いたデータ解析 オンライン
2025/4/25 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/4/25 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/4/30 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/5/6 ベイズ推定を用いたデータ解析 オンライン
2025/5/7 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/5/7 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/5/13 異常検知への生成AI活用と判断の標準化、高精度化 オンライン
2025/5/15 化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法 オンライン
2025/5/16 画像認識技術入門 オンライン
2025/5/19 AI分野における特許戦略 オンライン
2025/5/20 マテリアルズインフォマティクス・第一原理計算の基礎と材料研究への応用 オンライン

関連する出版物

発行年月
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化
1993/3/1 新しいサーボ制御の基礎と実用化技術