技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

マテリアルズインフォマティクスのためのデータ解析 超入門

Zoomを使ったライブ配信セミナー

マテリアルズインフォマティクスのためのデータ解析 超入門

オンライン 開催

概要

本セミナーでは、データの可視化、モデルの予測性能向上、モデルの逆解析を特に重点的に解説いたします。
また、分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例を紹介いたします。
ケモインフォマティクス・プロセスインフォマティクスにも役立つ内容となっております。

開催日

  • 2020年8月6日(木) 10時00分 17時00分

修得知識

  • ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス・データ解析・機械学習・分子設計・材料設計・プロセス設計・プロセス管理の基礎知識
  • ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス分野の最新の研究事例
  • データ解析の一般的なすすめ方・活用の仕方
  • データ解析の応用事例
  • 最新のデータ解析手法・モデリング手法
  • モデルの予測精度向上の方法
  • モデルの逆解析の方法

プログラム

 近年、化学・産業においてデータが蓄積されつつあり、そのデータを解析する動きが活発になっている。しかし、実験結果、高機能性材料などの開発データ、化学・産業プラントにおいて様々な製品を製造する際のデータなど、蓄積されたデータを十分に活用しきれていない状況も存在する。
 本セミナーでは、そのような化学・産業データの使い方・解析の仕方を基礎から解説する。情報科学・データサイエンスに基づき、データから種々の材料の機能を予測するモデルを構築したり、構築したモデルを活用することで新たな構造・実験条件・材料・装置を設計したりする方法である。さらに、ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス分野を中心にして豊富な応用事例も紹介する。

  1. ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスの基礎知識
    1. 機械学習・人工知能
    2. 定量的構造物性相関・定量的構造活性相関
    3. 化学構造生成
    4. 分子設計
    5. 材料設計
    6. プロセス設計
    7. プロセス管理
    8. ケモインフォマティクス
    9. マテリアルズインフォマティクス
    10. プロセスインフォマティクス
  2. 化学・産業データ解析の進め方・活用方法
    1. データの形式、記述子
    2. 一般的なデータの前処理
    3. データの可視化・低次元化
      1. ヒストグラム・散布図・箱ひげ図・相関行列
      2. 主成分分析 (Principal Component Analysis, PCA)
      3. 可視化の性能を検討するための指標
      4. [発展] Generative Topographic Mapping (GTM)
      5. [発展] 多様体学習
    4. クラスタリング
      1. 階層的クラスタリング
      2. [発展] 混合ガウスモデル (Gaussian Mixture Model, GMM)
    5. クラス分類
      1. 線形判別分析 (Linear Discriminant Analysis, LDA)
      2. 決定木 (Decision Tree, TD)
      3. ランダムフォレスト (Random Forest, RF)
      4. [発展] サポートベクターマシン (Support Vector Machine, SVM)
    6. 回帰分析
      1. 最小二乗法による重回帰分析 (Multiple Linear Regression (MLR) or Ordinary Least Squares (OLS) )
      2. 部分的最小二乗法 (Partial Least Squares, PLS)
      3. 決定木 (Decision Tree, DT)
      4. ランダムフォレスト (Random Forest, RF)
      5. [発展] サポートベクター回帰 (Support Vector Regression, SVR)
    7. モデルの予測性能の向上
      1. 予測性能の評価
      2. アンサンブル学習
      3. [発展] 半教師あり学習 (半教師付き学習)
    8. モデルの適用範囲
      1. データ範囲
      2. データ中心からの距離
      3. データ密度
      4. アンサンブル学習
    9. モデルの逆解析
      1. モデルの適用範囲を考慮した逆解析
      2. グリッドサーチ
      3. サンプリング
      4. [発展] ベイズの定理
    10. 実行するためのプログラム紹介
  3. 分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例
    1. 化学空間の可視化に基づく分子設計
    2. 定量的構造物性 (活性) 相関モデルの逆解析に基づく分子設計
    3. 定量的構造物性 (活性) 相関モデルの適用範囲を考慮した分子設計
    4. 適応的実験計画法による材料設計
    5. シミュレーションとインフォマティクス技術を活用したプロセス設計
  4. まとめ・質疑応答

講師

  • 金子 弘昌
    明治大学 理工学部 応用化学科
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 45,000円 (税別) / 49,500円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 45,000円(税別) / 48,600円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 54,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 97,200円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 145,800円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/2/14 R&D部門のデータ共有・利活用 (MI, AI) のためのデータ共有システム構築と進め方 オンライン
2025/2/17 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/19 マテリアルズインフォマティクスの主幹となる計算科学シミュレーション オンライン
2025/2/19 ベイズ統計及びベイズモデリングの基本的な考え方とその実践・活用 オンライン
2025/2/19 化粧品品質安定性確保と評価の進め方・トラブル対応 オンライン
2025/2/19 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/2/19 マテリアルズ・インフォマティクスによる電池材料開発事例 オンライン
2025/2/19 非臨床試験における試験委受託時と報告書レビューの留意点 オンライン
2025/2/20 音による故障検知および故障予知 オンライン
2025/2/20 人工知能技術:MTシステム 超入門 オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/25 AI・LLMの学習時間短縮と性能、回答精度向上 オンライン
2025/2/25 マテリアルズインフォマティクスの基礎技術となる計算科学シミュレーション オンライン
2025/2/26 ChatGPTによる多変量解析の進め方 オンライン
2025/2/26 体外診断用医薬品の性能評価に必須の統計解析基礎講座 オンライン
2025/2/26 Vision Transformerの仕組みとBEV Perception オンライン
2025/2/26 化粧品品質安定性確保と評価の進め方・トラブル対応 オンライン
2025/2/26 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン