技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

入門 機械学習

入門 機械学習

~基本的手法と実践技術~
東京都 開催 会場 開催

開催日

  • 2020年2月3日(月) 10時30分 16時30分

プログラム

 機械学習はデータを取り扱う様々な分野に応用を広げている。新規に参入する際には敷居が高いと思われているが、ツールなども整備されており、ちょっとしたコツを身につければ最先端の技術も使いこなすのは難しくない。
 本講座では機械学習で何ができるのかを説明し、入門から最先端技術までの一通りの道筋を紹介する。

  1. 機械学習で何ができるのか
    1. 機械学習とは
    2. 機械学習の歴史
    3. 機械学習の最新の動向
    4. 機械学習でできること
    5. 機械学習のカスタマイズ
  2. 機械学習の手法とその特徴
    1. 多変量解析法
      1. データの種類
      2. 回帰と予測
      3. 次元の呪いと主成分分析
      4. クラスタリング
      5. パターン認識法
    2. ベイズモデリング
      1. 確率モデルの考え方
      2. ベイジアンネット
      3. ナイーブベイズ法
      4. マルコフ連鎖モンテカルロ法
      5. 変分ベイズ法
      6. 状態空間モデルとパーティクルフィルタ
    3. カーネルマシン
      1. カーネル多変量解析
      2. サポートベクターマシン
    4. スパースモデリング
      1. 構造抽出とモデル選択
    5. ディープラーニング
      1. ニューラルネットワーク
      2. たたみこみニューラルネットワーク
      3. 制約付きボルツマンマシン
    6. その他の機械学習技術
      1. バンディットと強化学習
      2. アンサンブル学習
  3. 機械学習の実践技術
    1. データ解析の注意点
    2. データ解析開発言語と実例
    3. 欠損値への対処
    4. 問題のモデル化技術

講師

  • 赤穂 昭太郎
    国立研究開発法人 産業技術総合研究所 情報・人間工学領域
    上級主任研究員

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 50,600円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/15 化粧品品質安定性確保と評価の進め方・トラブル対応 オンライン
2025/4/16 異常検知・学習データ作成のための生成AI活用 オンライン
2025/4/16 データ分析と統計解析の基礎、実務への活用 オンライン
2025/4/16 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/17 スパース推定の基礎、本質の把握・理解と実装応用技術への展開 オンライン
2025/4/17 画像認識のためのディープラーニングとモデルの軽量化 オンライン
2025/4/17 時系列データ解析による異常検知および故障予測 東京都 オンライン
2025/4/21 図解と演習で学ぶ実験計画法入門 オンライン
2025/4/21 非臨床試験における統計解析入門 オンライン
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 小規模データに対する機械学習の効果的適用法 オンライン
2025/4/23 化粧品品質安定性確保と評価の進め方・トラブル対応 オンライン
2025/4/23 分析法バリデーション 入門講座 オンライン
2025/4/23 ベイズ推定を用いたデータ解析 オンライン
2025/4/23 QbDに基づく医薬品開発の考え方と安定性試験結果の統計解析の手法 オンライン
2025/4/23 官能評価の基礎と評価用アンケート作成と解析のポイント オンライン
2025/4/24 非臨床試験における統計的側面からみた試験委受託時の留意点と報告書レビュー オンライン
2025/4/25 カルマンフィルタ・機械学習を学ぶための確率統計、線形代数、最小二乗法入門 オンライン
2025/4/25 Excel業務の改善術入門 オンライン

関連する出版物

発行年月
2023/12/27 実験の自動化・自律化によるR&Dの効率化と運用方法
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/8/31 医療機器の設計開発における統計的手法とそのサンプルサイズ設定
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2018/4/25 統計学的アプローチを活用した分析法バリデーションの評価及び妥当性
2017/5/10 分析法バリデーション実務集