技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習を用いたデータ分析技術の基礎とデータの取扱い方

機械学習を用いたデータ分析技術の基礎とデータの取扱い方

~データ分析の正しい手順・進め方と結果の見方~
東京都 開催

概要

本セミナーでは、データ分析の正しいやり方・手順を学び、自分自身で正しくデータ分析を行えるようになること、データ分析結果を正しく評価できるようになることを目指します。

開催日

  • 2019年9月19日(木) 10時00分 16時30分

修得知識

  • データ分析プロセスの基礎知識
  • データの収集方法、前処理・扱い方
  • 分析結果の評価指標・評価方法

プログラム

 機械学習・ディープラーニング・人工知能 (AI) 技術が注目され、データ分析を実務に活用したいと考える方が急増しています。オープンソースの機械学習ツールが充実してきたことで、高度なアルゴリズムを利用した分析を容易に行うことができるようになりました。
 しかし、正しい分析の手順・正しい分析結果の評価方法が分からなければ、ツールを正しく使いこなすことはできません。分析の手順・結果の見方が間違っていると、質の高い分析結果を得ることができないばかりでなく、誤った分析結果に基づき誤った判断を下してしまう恐れもあります。
 本セミナーでは、データ分析の正しいやり方・手順を学び、自分自身で正しくデータ分析を行えるようになること、データ分析結果を正しく評価できるようになることを目指します。

  1. データの前処理・扱い方
    1. 分析に適したデータ形式、適していないデータ形式
    2. 特徴量 (説明変数) の分類
    3. カテゴリ変数の扱い方
    4. 欠損値の扱い方
    5. データの正しい可視化方法
    6. データ収集時・前処理時の注意点
  2. 機械学習の基本と利用時の注意点
    1. 機械学習とは
    2. 代表的なアルゴリズムとその分類
    3. 機械学習アルゴリズム利用時の注意点
    4. ディープラーニングとその使いどころ
  3. 分析結果の評価法
    1. 回帰モデルの評価基準
    2. 分類 (識別) モデルの評価基準
    3. 精度以外の評価基準とその重要性
  4. 機械学習によるデータ分析のすすめ方
    1. パラメータ調整の必要性とその方法
    2. 過学習についてとその対策
    3. 性能向上のために何をするべきか
  5. ビジネスへの適用について
    1. 分析結果を現場にどう受け入れてもらうか
    2. 機械学習の前にやるべきことはないか
    3. 実運用時の課題
    4. その分析は解くべき課題を解決するものか
    5. 分析結果の公平性
    6. 真実は常に一つ?
    • 質疑応答

講師

  • 鴨志田 亮太
    株式会社 日立製作所 研究開発グループ 知能情報研究部
    主任研究員

会場

ビジョンセンター田町

4F 408

東京都 港区 芝5-31-19 オーエックス田町ビル4階
ビジョンセンター田町の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 42,750円 (税別) / 46,170円 (税込)
複数名
: 22,500円 (税別) / 24,300円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 22,500円(税別) / 24,300円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 42,750円(税別) / 46,170円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 48,600円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 72,900円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。
本セミナーは終了いたしました。
講演順序・プログラムは変更となる場合がございます。予めご了承ください。

これから開催される関連セミナー

開始日時
2019/9/26 深層学習を用いた生成モデルGAN / VAE技術の応用事例・最新動向 東京都
2019/9/27 自然言語処理の基礎と応用 東京都
2019/9/27 ディープラーニングの基礎概念と実践のための具体的技術 東京都
2019/9/27 事例をふまえた臨床試験における非劣性試験デザインと非劣性マージン設定 東京都
2019/9/30 マテリアル・ケモ・インフォマティクス入門 東京都
2019/10/3 Excelを用いた官能評価の統計・データ解析 東京都
2019/10/4 創薬化学におけるデータサイエンス・機械学習の基礎 東京都
2019/10/4 画像データ前処理に活かす画像フィルタリングの基本と最新動向 東京都
2019/10/4 ドライバ状態モニタリング / センシング技術と統計処理・機械学習の活用 東京都
2019/10/7 パターン認識・画像認識の基礎と応用 東京都
2019/10/9 機械学習の高効率化・モデル最適化技術 東京都
2019/10/10 分析化学における測定値の信頼性と正しい提示の仕方 東京都
2019/10/11 サポートベクターマシンの基礎と予知保全・故障予測への活用 東京都
2019/10/11 データ解析・実験計画法・ベイズ最適化の基礎と応用 東京都
2019/10/11 分析法バリデーション入門講座 大阪府
2019/10/17 技術者・研究者のための実験計画法入門 東京都
2019/10/17 製造業における「人工知能」の基礎と自動設計・仮想検査・未知の異常検知への応用入門 東京都
2019/10/17 画像の対応付けの基礎とその高精度化 東京都
2019/10/18 機械学習を用いた異常判別 東京都
2019/10/23 深層学習の「見える化」と次世代の「説明できるAI」 東京都