技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

(二軸)押出機の(溶融)混練・分散技術の理論と実践 徹底解説セミナー 全2コース (2日間)

(二軸) 押出機の (溶融) 混練・分散技術の理論と実践 徹底解説セミナー A+Bコース

(二軸)押出機の(溶融)混練・分散技術の理論と実践 徹底解説セミナー 全2コース (2日間)

東京都 開催 会場 開催

概要

本セミナーでは、固体輸送、溶融、溶融体輸送と混練に関して基礎理論をわかりやすく解説するとともに、それに基づく実験およびシミュレーションを用いた混練評価およびスケールアップについて現状と課題を概説いたします。

開催日

  • 2019年6月20日(木) 10時30分 16時30分
  • 2019年8月29日(木) 10時30分 16時30分

受講対象者

  • 押出成形・押出加工に関連する製品の技術者
    • フィルム (光学フィルム・太陽電池関連フィルム・包装など)
    • シート (発泡シートなど)
    • パイプ・ホース・チューブ
    • 土木・建材用異形押出品
    • 電池セパレータ
    • 高機能複合材料 (ナノコンポジット)
    • 機能性薄膜・フィルム
    • 食品
    • トイレタリー分野
    • 押出機 など

修得知識

  • 混練の基礎理論
  • 溶融混練理論に基づく装置形状の理解
  • 溶融理論の現状
  • シミュレーション技術の現状

プログラム

2019年6月20日「押出機内の樹脂挙動および溶融混練の基礎と最適化」

 二軸スクリュ押出機やミキシングエレメントを有する単軸スクリュ押出機を用いて高分子材料の混練がなされている。材料の高機能・高品質化への対応や、不良現象・トラブルの回避には、装置内の材料挙動の把握が重要である。また、押出機・混練機内の材料挙動をシミュレーションにより予測する技術は年々進歩しており、混練を含めた実際のプロセス設計、装置設計に応用されている。
 本セミナーでは、固体輸送、溶融、溶融体輸送と混練・脱揮等に関して基礎理論をわかりやすく解説するとともに、それに基づく実験およびシミュレーションを用いた評価、スケールアップ、トラブル対策について例を交えて考え方を詳しく解説する。

  1. 背景
    1. 押出機・混練機の概要
  2. 実験による可視化・計測
    1. 既往の可視化・計測の例
    2. 最近の可視化・計測技術の研究例
    3. 各種実験の利点と問題点
  3. 固体輸送メカニズム
  4. 溶融部における高分子材料の溶融メカニズム
    1. 溶融プロセスの可視化
    2. 溶融理論
    3. 溶融不良への対応
    4. 溶融部での構造形成
  5. 溶融混練部の混練メカニズム
    1. 分配混合と分散混合
    2. 伸長流動の重要性
    3. ポリマーブレンド・コンポジットの混練理論
    4. 押出機・混練機と溶融混練理論の関係
  6. 単軸スクリュ押出機内の溶融混練
    1. 溶融混練理論とミキシングスクリュの関係
  7. 二軸スクリュ押出機内の溶融混練および脱揮
    1. 溶融混練理論と二軸スクリュ押出機の関係
    2. 溶融混練に付随する問題と対策
    3. 脱揮操作とメカニズム
  8. 計算機シミュレーションによる材料挙動の予測
    1. 計算機シミュレーションの利点と問題点
    2. 固体輸送部のシミュレーション
    3. 溶融部のシミュレーション
    4. 溶融体輸送部のシミュレーション
  9. シミュレーションによる混練評価
    1. 分配混合指標とその考え方
    2. 分散混合指標とその考え方
    3. 各種評価指標を用いた研究例
    4. 実験検証の難しさ
  10. スケールアップとシミュレーション
    1. スケールアップの一般論
    2. シミュレーションによるスケールアップの研究例
  11. 今後の課題
    • 質疑応答

2019年8月29日「二軸押出機による溶融混練の分散・混練度向上技術評価と品質スケールアップの一手法」

 二軸押出機では残存最大粒子径でのミクロン分散が限界であり、サブミクロン分野、ナノ分散分野では新しい分散機構が用いられる。しかし二軸押出機でも均一性を改良すればサブミクロンが可能になる。手法は分配分散機能によっていて、考え方、技術的な方法を説明する。一方最近、事前の分散品質予測が高確率で可能になってきた。スケールアップが容易になり、従来の問題点が解決しつつある。なお、伸長流動分散では純理論的に分散レベルが自由に実現できるので問題が起きない。
 各技術において種々の実例を示すが、最近の注目技術であるセルロースナノファイバー (CNF) の分散技術についても言及する。

  1. フィラーの分散性過程で、せん断応力依存領域とせん断歪依存領域
    1. Palmgrenの4段階分散モデル (従来) と橋爪の5段階分散モデル
    2. 理想的分散理論および転がり粒子破砕理論
    3. 破砕分散はせん断応力依存であるが、均一性達成には分配分散作用が重要 (最近再認識されてきている)
      1. 分配分散の二面性
        • 破砕分散品質到達点前後の分配分散性の違いと実際
      2. 第1の「送り込み分配分散」・・せん断破砕分散と同居する
        • どういう役目か、どのようにコントロール、評価するのか
          • Blister Ring, Ring Segment, 絞り機構の応用、T関数の応用
          • Ring、絞り機構には、伸長流動分散効果の副次効果がある
        • 伸長流動分散の均一性が今後大きな分野に発展する可能性がある。
          • 米国のVane Extruderなど3種類の伸長流動分散機構
        • せん断流動、伸長流動の共存流動における分散性
          • HMWPEがHDPE中で分散した (相対粘度≧4.0でも可能)
      3. 第2の「まき散らし分配分散」 … ・単独で作用する
        • どういう役目か、どのようにコントロール、評価するのか。
          • Gear Elementなど … 欧米の方式
          • CTM, Static Mixerなど … 日本の方式
      4. 注意すべき2軸スクリューの基本
  2. せん断破砕分散、せん断分配分散の品質評価実験
    1. 凝集破壊に関する最近の解析 (被分散相に注目する)
      • 凝集粒子の破壊力は、凝集次数と凝集粒子径の関数である
      • CBでの解析結果
    2. セルロースナノファイバー (CNF) の最適分散方法
      1. GF, CNTとの分散手法の違い
      2. 2段階分散手法における2分散方法
      3. 固相せん断分散技術
  3. バウンドラバー、バウンドポリマーとナノ分散との相関
    1. 材料の機械強度が向上する現象解明
      1. コンパウンドの場合
        • 限界粒子間距離が関与する。粒子径は直接関与しない
        • 無機粒子上のSticky Hard 層の高分子が絡まる。粒子の接触ではない。
      2. ポリマーアロイの場合 各粒子が相互に流路干渉することによる。
    2. Shear Thinning流体とShera Thickening流体
      1. 分散後の材料粘度ではなくて、分散中の材料粘度が問題
      2. CB コンパウンドでは、CBコロイド溶液と同じで、Shear thinning→Shear thickening→Shear Thickeningとなる
      3. 流動形態の変化は何に起因するか
        • 無機粒子表面における、高分子と電気的な結合状態の変化とする理論
      4. 分散に最適なせん断分散速度が存在する。 (全Fillerには適用できない)
        • CB分散では顕著な特性がある
        • エラストマー、ゴムの混練でも発生する
  4. Fillerの分散品質が予測できる時代に入った。
    1. 純理論の相似側では、品質スケールアップはできない
    2. 分散品質予測技術
      事前の品質予測が高精度で可能なら、相似側は必要なくなる
      1. 品質方程式の作成方法
      2. 分散品質予測精度の確認
        • 精度を上げるため、ノイズ実験を消去する方法
      3. 有効時間が意味するもの
        • T関数
        • 真空混練技術
    3. 伸長流動分散では品質スケールアップができる。
      1. PA中へのHDPEの分散
      2. エラストマー中への別エラストマーの分散
      3. HDPE中へのHMWPEの分散
  5. ナノ分散技術
    1. サブミクロン分散とナノ分散
    2. 高分子ナノ分散
      • In Situ法
      • 超臨界分散法
      • 高せん断法
      • 伸長流動分散法
      • リアクティブプロセシング法
    3. ナノコンポジット
      • In Situ法
      • 層間挿入法
      • 高せん断法
      • スラリー分散法
      • Melt Solution法
      • ランダム重合体で粒子表面を修飾する方法
    4. GO, rGOのコンパウンド
    5. LFP
    • 質疑応答

講師

  • 梶原 稔尚
    九州大学 大学院工学研究院 化学工学部門
    教授
  • 橋爪 慎治
    有限会社エスティア
    代表取締役

会場

芝エクセレントビル KCDホール
東京都 港区 浜松町二丁目1番13号 芝エクセレントビル
芝エクセレントビル KCDホールの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 71,250円 (税別) / 76,950円 (税込)
複数名
: 37,500円 (税別) / 40,500円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 37,500円(税別) / 40,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 71,250円(税別) / 76,950円(税込)
    • 2名様でお申し込みの場合 : 2名で 75,000円(税別) / 81,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 112,500円(税別) / 121,500円(税込)
  • 受講者全員が会員登録をしていただいた場合に限ります。
  • 同一法人内(グループ会社でも可)による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/2/6 エポキシ樹脂 2日間総合セミナー オンライン
2025/2/7 高分子材料の相溶性・相分離現象の基礎と相容化剤を用いたポリマーブレンド材料およびマテリアルリサイクルへの応用 東京都 会場
2025/2/14 重合反応の基礎・応用 オンライン
2025/2/17 高分子へのフィラーのコンパウンド技術の基礎と応用 オンライン
2025/2/18 粉体・微粒子における帯電・付着力の基礎と応用、制御および評価 オンライン
2025/2/21 シリコーンの基礎・特性と設計・使用法の考え方・活かし方 オンライン
2025/2/27 液中の粒子分散制御及び評価の要点 オンライン
2025/2/27 メタクリル系ポリマー活用のための入門講座 オンライン
2025/2/27 ディスプレイ向け光学フィルムの基礎・市場と高機能化技術トレンド オンライン
2025/3/6 エポキシ樹脂の耐熱性向上と機能性両立への分子デザイン設計および用途展開における最新動向 オンライン
2025/3/10 シリコーンの基礎・特性と設計・使用法の考え方・活かし方 オンライン
2025/3/13 半導体封止材用エポキシ樹脂・硬化剤・硬化促進剤と分析・特性評価法および技術動向 オンライン
2025/3/14 スパッタリング法の総合知識と薄膜の特性制御・改善、品質トラブルへの対策 オンライン
2025/3/14 分散度と安定性を両立させるナノ粒子・微粒子分散の具体的方法と勘所 オンライン
2025/3/28 スパッタリング法の総合知識と薄膜の特性制御・改善、品質トラブルへの対策 オンライン
2025/3/28 固体高分子の破壊とタフニング オンライン
2025/3/31 分散度と安定性を両立させるナノ粒子・微粒子分散の具体的方法と勘所 オンライン
2025/4/7 ゴム・プラスチック材料の破損、破壊原因とその解析法 東京都 会場
2025/12/5 無機ナノ粒子の合成と表面処理・分散性向上 オンライン
2025/12/18 無機ナノ粒子の合成と表面処理・分散性向上 オンライン