技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

画像認識のためのパターン認識と深層学習

画像認識のためのパターン認識と深層学習

~Pythonを用いた実装とパラメタチューニング~
東京都 開催 会場 開催

開催日

  • 2017年10月25日(水) 11時00分16時30分

プログラム

 本セミナーでは、パターン認識・機械学習の基礎と、Pythonによる実装について解説します。
 近年、SVM, AdaBoost, Random Forestなどのこれまで広く利用されてきた機械学習ツールだけでなく、Deep Learning も様々なところで、特にAIシステムの構築に利用されていますが、それらを使いこなすには、基礎的な知識が重要です。そこで、パターン認識・機械学習の基礎について講義を行い、それをふまえてPythonを用いた実装やパラメタチューニングについて解説します。
 また、近年のAIシステムの要となっているDeep Learningについても、実装方法や学習のコツなどについて解説します。

  1. パターン認識・深層学習の基礎
    1. パターン認識とは
    2. パターン認識の基礎技術
      1. 単純パーセプトロン
      2. サポートベクトルマシン
      3. アンサンブル学習
      4. 多層パーセプトロン
    3. 深層学習への発展
    4. 深層学習で出来ること
  2. Python入門
    1. なぜPythonか
    2. Pythonの利用環境
    3. Pythonの文法
    4. Pythonでの機械学習に必要な数値計算
  3. Pythonによるパターン認識システムの実装
    1. サポートベクトルマシンを用いた画像認識
    2. 様々な手法の選択的な利用と比較
    3. 自動パラメタチューニング
  4. PythonによるDeep Learningの利用
    1. 分類:Neural Networkによる画像認識
    2. 特徴抽出+分類:Convolutional Neural Networkの利用
  5. まとめ・質疑応答

講師

  • 川西 康友
    名古屋大学 大学院 情報科学研究科
    助教

会場

中央大学 駿河台記念館
東京都 千代田区 神田駿河台3丁目11−5
中央大学 駿河台記念館の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 49,680円 (税込)
1口
: 56,000円 (税別) / 60,480円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/15 Pythonを用いた実験計画法とその最適化 オンライン
2026/1/16 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/19 Excel/Pythonを活用した製造現場の品質データ分析入門 オンライン
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (2日間) オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (基礎編) オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/26 Pythonを用いた実験計画法とその最適化 オンライン
2026/1/27 AIの選択・精度・効率・構造・コストなどの最適化原理 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 ディジタルフィルタを理解する オンライン
2026/1/28 Excel/Pythonを活用した製造現場の品質データ分析入門 オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/29 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (実践テクニック・応用編) オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン