技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Caffeで始めるディープラーニング

Caffeで始めるディープラーニング

東京都 開催 会場 開催

開催日

  • 2017年3月10日(金) 13時00分 17時00分

受講対象者

  • ディープラーニングをこれから始めたい方
  • Caffeフレームワークをこれから使ってみたいという方
  • Caffeをこれまでに使ったことはあるが更に中身を理解したい方

修得知識

  • Python言語を用いてCaffeフレームワークを使う方法
  • Caffeを用いてディープラーニング技術を実装する方法

予備知識

  • Python言語の基礎

プログラム

 主に画像認識研究者・技術者の間で人気のディープラーニングフレームワークCaffeの使い方を学びます。Caffeは数あるディープラーニングフレームワークの中でも開発コミュニティが活発で、最先端の研究結果から得られたモデルを容易に使い始めることができます。
 本セミナーではPython言語の使用を念頭に、ディープラーニングの基本、Caffeフレームワークの概要、簡単な使い方から高度な応用まで、幅広く解説します。公開されている高性能な画像認識モデルの使い方、自分の考えたニューラルネットワークを実装して学習する方法、データの準備の仕方など、Caffeでディープラーニングを始めるためのエッセンスを学びます。

  1. ディープラーニング
    1. なぜ今、深層学習?
    2. これまでの経緯
    3. ニューラルネットワークの基本
    4. 誤差逆伝播法
    5. 画像認識と畳み込みニューラルネットワーク (CNN)
    6. 様々なネットワーク
  2. Caffeフレームワーク
    1. Caffeの特徴
    2. Caffeを使ってできること
    3. Caffeの構造
    4. ネット、レイヤー、ブロブ
    5. データ
    6. 損失関数
    7. ソルバー
    8. Model Zoo
  3. Caffeを使う準備
    1. Buildの手順
    2. GPU設定
    3. Dockerで環境構築する方法
  4. Python言語について
    1. Jupyter環境
    2. Pythonと数値計算
    3. CaffeのPythonインタフェース
  5. Caffeの基本的な使い方
    1. 線形回帰
    2. ImageNetモデルを使った一般物体のカテゴリ識別
    3. CNN特徴量の抽出と画像検索への応用
    4. ネットワークの定義と学習方法
    5. 新しい分類問題への転移学習
    6. 学習データについて
    7. 画像ファイル
    8. LMDB/LevelDBフォーマット
    9. HDF5フォーマット
  6. Caffeの高度な使い方
    1. 新しいレイヤーの開発
    2. Faster R – CNNで物体検出
    3. FCNsによるピクセル単位の予測
    4. LSTMsでシーケンスモデル

講師

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 43,000円 (税別) / 46,440円 (税込)
1口
: 56,000円 (税別) / 60,480円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/7 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/14 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン
2025/1/15 Python実践データ分析/機械学習 オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/20 Pythonを用いてコンピュータビジョンの理論と実践を学ぶ オンライン
2025/1/22 ベイズ推定を用いたデータ解析 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/27 感性工学商品開発プロセスへのAI応用 オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン
2025/1/30 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/4 カルマンフィルタの実践 オンライン
2025/2/4 ベイズ推定を用いたデータ解析 オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/7 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/10 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン