技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

知的情報処理の最前線

知的情報処理の最前線

~スパースモデリングと深層学習、そして、計算技術の革命~
東京都 開催 会場 開催

開催日

  • 2016年11月18日(金) 10時30分 16時30分

プログラム

 世界中で隆盛を極める人工知能、機械学習の発展、そのブームに乗り遅れてはいけないと慌てている人もいるかもしれない。しかし、実はその原理は単純明快で、実装する方法も簡素に整備されている。実例を通して、機械学習の可能性を感じてもらいたい。
 特に、機械学習のブレークスルーとして有名な、深層学習をプログラムで実装することで、その可能性を自分の能力へと昇華させることを目指す。深層学習は、複雑なデータを自動的に処理したのちに予測するシステムとして顕著な成果をあげた一方で、肝心の我々人間自身の発展にどれほど有効なのだろうか?データから本質的な部分を解析して見える形で取り出せる技術こそが重要なのではないだろうか。それがスパースモデリングである。数少ない本質的に重要な部分を抽出する変数選択や、少ない情報から本質的な部分を明らかにすることで、大きな情報利得を得るのに役立つ圧縮センシングなど、今後のセンシング社会におけるテクノロジーを支える根幹技術を紹介しよう。
 機械学習にしろ、スパースモデリングにしろ、背後では大量のデータ、または高次元で複雑な情報を処理する計算機の発展に支えられている技術だ。それではその計算機の将来はどうなるのであろうか?世界中で競争が始まっている最先端の計算機開発の現状を知ることで、これからの世界が向かっていく方向について考えてみよう。
 現役の研究者が、他では聞けない熱くわかりやすい語り口で、最先端の研究内容を語る。元予備校講師という変わった経歴も見逃せない。乞うご期待。

  1. 機械学習って何?
    1. データから学ぶ (回帰の基本)
      • 実験をして、その結果から法則を得る。そうだグラフを書いてみよう。このグラフは何関数?自動的に答えることができたら、どんなに便利だろう。明日の天気を決める法則もそのグラフからわからないだろうか?回帰の基本的な概念の導入をします。
    2. 陣地を決める (識別の基本)
      • 犬と猫の境目はなんだろうか?似ているけど違う、その違いはどこにあるだろうか?それを調べることで動物の識別、特定の疾病が発症しているかどうかを予測する識別のお話をします。
    3. 理解するとはなんだろうか (人間と機械の知能の違い)
      • 機械が自動的になんでも判別することができるようになると、厳しい人たちは口をそろえてこう言います。「機械に本当のことはわかっているのか?」少し考えてみましょう。人間と機械の付き合い方を考える時間です。
  2. 深層学習って何?
    1. より複雑なものを学ぶには?
      • やりたいことが複雑になればなるほど、その方法は難しくなる?いいえ、掛け算も割り算もなんとか関数も基本は足し算と引き算だったように、単純なものを繰り返して複雑なタスクが実行できます。そうしてできたのが深層学習です。
    2. なぜ今までできなかった?
      • そんな複雑そうで単純な深層学習、なぜ今頃大ブレークしているのか?
        実は幾つかの理由がありました。では今は実現できるのはなぜか、その秘密を教えちゃいましょう。
    3. 実はとっても簡単!深層学習実装編
      • 機械学習のライブラリは揃っているので、帰ったらすぐみなさんも深層学習ユーザーに。そこから新しいことを始めようというきっかけにしましょう。
  3. スパースモデリング
    1. 深層学習で人は賢くなれるのか?
      • さて深層学習で、なんでも自動的に予測をしてくれるようになったとして、その予測に関わっている重要な要因となっていたものは結局なんだったのでしょうか。それがわからずして、我々は納得できるでしょうか?
        本当に知りたいのは、そこじゃないでしょうか?それに答えるためのスパースモデリングという新技術について紹介します。
    2. そのデータの本当に重要な要素は何か?
      • どんなに複雑なデータであっても、実は本質的に重要な部分は数少ないんじゃないか?そこを抽出しさえすれば、そのデータを取り巻く現象を理解したと言えるのではないか?物事を理解しやすい形に整形してくれる技術、それがスパースモデリングです。
    3. 圧縮センシングによる計測革命
      • データ解析に使えるだけじゃないスパースモデリングのもう一つの側面について紹介しましょう。せっかく撮ったデータ、ちょっと解析するには少なすぎたかな?何が結局得られたかわからないようなデータ。そんなデータを復活させることができるなんて言われたらどうですか?データが示す本質的な部分を抽出することによって、少ないデータであっても十分に解析しうるクオリティまで復元することができる。そんな技術を使って、計測機器の革命を起こしましょう。見えないものが見える世界へようこそ。
  4. データ駆動型科学から社会へ
    1. データ駆動型科学の発展
      • 機械学習やスパースモデリングの技術により、人間はデータから新しい知見を見出すことが容易になりつつあります。多くの計測データから未発見の現象や物質を発見することでデータ駆動型の科学が始まっています。
    2. 最適化問題が世界を変えるデータ駆動型社会
      • その機械学習やスパースモデリングもどちらも「データにあった最も優れた組み合わせや数値をはじき出してくれ」と最適化問題という共通した問題意識から発展しました。これからはセンサーの小型化により、大量に計測したデータから社会インフラから全てが、人間の活動に有利なように最適で快適な方向へと誘導してくれるでしょう。そのとき必要な問題意識は、やはり最適化問題です。
    3. 新しい計算パラダイム、量子アニーリング
      • その最適化問題を解くことがこれからの社会を作っていく基本技術であるとしたら、その最適化問題を高速に精度よく解く専用のマシンがあると良いことに気づきます。世界はすでにその方向に動いています。それが量子アニーリングと呼ばれる計算技術です。日本人が開発した新技術について最後少し触れることにしましょう。

講師

  • 大関 真之
    東北大学 大学院 情報科学研究科 応用情報科学専攻
    教授

会場

ちよだプラットフォームスクウェア
東京都 千代田区 神田錦町3-21
ちよだプラットフォームスクウェアの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 50,760円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)

割引特典について

  • 複数名 同時受講:
    1口 57,000円(税別) / 61,560円(税込) (3名まで受講可能)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/7 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/14 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン
2025/1/15 Python実践データ分析/機械学習 オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/21 システム同定による制御のためのモデリング オンライン
2025/1/22 ベイズ推定を用いたデータ解析 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 特許分析における生成AI/ChatGPT活用と競合他社の弱みの見つけ方 オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン
2025/1/30 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/4 カルマンフィルタの実践 オンライン
2025/2/4 ベイズ推定を用いたデータ解析 オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/7 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/10 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン

関連する出版物

発行年月
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2016/4/28 ドライバ状態の検出、推定技術と自動運転、運転支援システムへの応用
2014/5/10 生体信号処理技術(脳波) 技術開発実態分析調査報告書(CD-ROM版)
2014/5/10 生体信号処理技術(脳波) 技術開発実態分析調査報告書