技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

データサイエンスの基礎

医薬品・医療機器分野で働く技術者・QC/QA担当者のための

データサイエンスの基礎

~「統計的品質管理」総合コース2024 Aコース~
オンライン 開催

視聴期間は申込日から2か月間となります。
期間中は何度でもご視聴いただけます。
お申し込みは2025年6月27日まで承ります。

関連するセミナーとの同時申し込みはこちらより承っております。

開催日

  • 2025年6月27日(金) 10時30分 13時30分

プログラム

 医薬品や医療機器の品質は外観からでは判断できないため、我々には使用者 (医療関係者や患者) に具体的な安心感を与える義務 (説明責任) があります。ここで言う具体的な安心感とはエビデンスに基づいた科学的根拠のことです。そのためには統計の基礎はもとより、検定、推定、サンプリング理論、実験計画法と幅広い力量が必要です。これを隈なく学びたいと言う方も、一部分だけで十分と言う方もいると思います。そこで、本コースでは共通基礎セミナー (Aセミナー) といくつかの応用セミナー (B,C,D,E,Fセミナー) として取捨選択できるようにしました。統計は具体的なデータを用いて絵やグラフを使いながら勉強していくと意外と分かりやすいものです。全ての講座に計算のデモや演習を組み込んでありますので、統計初心者の方も安心してご参加下さい。皆様が日常的に直面している問題解決に少しでもお役に立てれば幸いです。
 なお、各応用セミナー (B,C,D,E,Fセミナー) の内容は相互に関係はありますが独立していますので、他のセミナーを受講していなければ理解できないということはありません。
 また、演習にはExcelのアドインツールである「分析ツール」を使いますので、事前にインストールしておいてください。

【Aセミナー】入門レベル「データサイエンスの基礎」

視聴時間:約3.5時間

 科学技術とは言葉を変えればデータサイエンスです。観察や実験から得られたデータを解析して、根底にある普遍的な法則や因果関係を解明していく、このことの積み重ねが科学技術の進歩の歴史と言っても過言ではありません。ですので、どのような分野で仕事をするにしても、ここで学ぶ内容は将来の飛躍のための大きな武器になります。取り上げるトピックとしては基礎的・入門的な内容ばかりですが、かなり深掘りしていきます。受講者層としては統計の初心者を想定していますが、学習すればするほど出てくる素朴な疑問、そのような疑問にも答えるコースでもあります。難しいことは簡単に、簡単なことはより深く、の精神で講義を進めていきます。新入社員教育や中堅社員のブラッシュアップ教育にも最適です。
 本講座は統計に関する予備知識は不要です。

  1. 基礎の基礎を徹底理解する
    1. 全体像を把握するには「ヒストグラム」が一番
    2. 「標準偏差」とは、ばらつきの数値化のこと
    3. 集団の中での相対的な場所は「規準化」で表現すべし
    4. 規準化を誰にでもわかる表現に変換する方法 (正規分布表)
  2. 信頼区間を深掘りする
    1. 意外に深い「平均値」の本当の意味合い
    2. 平均値のばらつきが「標準誤差」と呼ばれる理由
    3. 推定に保険をかける (t分布表)
    4. 95%信頼区間は「真の値を95%の確率で含む範囲」と言うけれど
    5. モンテカルロ・シミュレーションで検証する
  3. 相関と回帰を深掘りする
    1. 対応のある2変数間の関連の強さ (相関係数)
    2. 対応のある2変数の関連を数式で表現する (回帰分析)
    3. 相関係数と回帰分析だけで十分か? (回帰診断)
  4. 二値データ (良品・不良品) の取り扱い
    1. 分布は非対称
    2. 不良率の標準偏差
    3. 不良率の信頼区間
  5. 統計的検定・推定概論
    1. 平均値の差の検定 (対応のない場合)
    2. 平均値の差の検定 (対応のある場合)
    3. 検定におけるn数の効果
    4. 検定におけるp値の意味合い

講師

  • 福田 晃久
    スタット・イメージング・ラボ
    代表

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 23,700円 (税別) / 26,070円 (税込)
複数名
: 12,500円 (税別) / 13,750円 (税込)

持参品 (必須ではございません)

本セミナーの講演中にExcel実習を行う箇所がございます。
参加される際にPCをご持参いただけるとより理解度が深まります。
なお、演習は講師のデモも同時進行で行いますので、PCを持参されなくても支障ありません。
PC持参の場合は、Excelにアドインツールである「分析ツール」を組み込んできて下さるようお願い申しあげます。

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 12,500円(税別) / 13,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 23,700円(税別) / 26,070円(税込)
    • 2名様でお申し込みの場合 : 2名で 25,000円(税別) / 27,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 37,500円(税別) / 41,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。
  • サイエンス&テクノロジー社の「2名同時申込みで1名分無料」価格を適用しています。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

全6コース申込セット受講料について

  • 通常受講料 : 156,420円(税込) → 全6コース申込 割引受講料 114,950円(税込)

全6コースのお申込み

割引対象セミナー

オンデマンドセミナーの留意点

  • 申込み後、すぐに視聴可能なため、本セミナーのキャンセルは承りかねます。 予めご了承ください。
  • 録画セミナーの動画をお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • お申し込み前に、 視聴環境 をご確認いただき、 視聴テスト にて動作確認をお願いいたします。
  • 3営業日後までに、メールをお送りいたします。
  • 視聴期間は申込日より2ヶ月間です。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • 動画視聴・インターネット環境をご確認ください
    • セキュリティの設定や、動作環境によってはご視聴いただけない場合がございます。
    • サンプル動画が閲覧できるかを事前にご確認いただいたうえで、お申し込みください。
  • 本セミナーの録音・撮影、複製は固くお断りいたします。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/12/13 デスクトップで行う医薬品市場予測のスキルアップと精度向上 オンライン
2024/12/13 分析法バリデーションの統計解析入門 オンライン
2024/12/13 分析法バリデーションのための統計解析入門と分析能パラメータ計算法入門 東京都 オンライン
2024/12/16 AI機械学習に的を絞った行列・偏微分・確率密度の超入門 オンライン
2024/12/16 X線光電子分光法 (XPS、ESCA) の原理と測定条件の設定、データ解析法 オンライン
2024/12/17 デスクトップで行う医薬品市場予測のスキルアップと精度向上 オンライン
2024/12/17 進化計算を利用した多目的最適化技術とその応用 オンライン
2024/12/19 近赤外分光法の基礎と材料等の分析への応用 オンライン
2024/12/19 臨床試験を行う上で知っておくべき統計的知識 オンライン
2024/12/19 管理図 オンライン
2024/12/20 アレニウス式加速試験におけるプロット作成と予測値の取扱い オンライン
2024/12/20 データから本質的な情報を取り出す製造業における予測・原因分析・縮約・分類のための統計・多変量解析 実践入門 オンライン
2024/12/20 ChatGPT4による丸投げ「実験計画法」入門 オンライン
2024/12/20 蒸留プロセスの計算、考え方、進め方、その応用 オンライン
2024/12/20 分析法バリデーションコース (2日間) オンライン
2024/12/20 ICH Q2 (R2) 、Q14をふまえた承認申請時の分析法バリデーションの留意点 オンライン
2024/12/20 CO2分離回収技術とプロセス・コスト試算 オンライン
2024/12/23 ChatGPT × Pythonによる統計解析とデータ分析・予測への応用 オンライン
2024/12/23 AI機械学習原理を理解するための数式読み方入門 オンライン
2024/12/23 分離工学の基礎と装置設計法 オンライン