技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

材料開発のためのデータ解析入門

材料開発のためのデータ解析入門

~マテリアルズインフォマティクス、ケモインフォマティクス、プロセスインフォマティクス~
オンライン 開催

開催日

  • 2024年1月19日(金) 10時00分 17時00分

受講対象者

  • 化学・産業界において、インフォマティクスを活用して材料開発 (および化学品開発) に従事している研究者・技術者
  • 材料開発 (および化学品開発) にインフォマティクスを今後活用しようと考えている研究者・技術者

修得知識

  • ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス・データ解析・機械学習・分子設計・材料設計・プロセス設計・プロセス管理の基礎知識
  • ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクス分野の最新の研究事例
  • データ解析の一般的なすすめ方・活用の仕方
  • データ解析の応用事例
  • 最新のデータ解析手法・モデリング手法
  • モデルの予測精度向上の方法
  • モデルの逆解析の方法

プログラム

 近年、化学の分野や産業全般においてデータが蓄積されつつあり、そのデータを解析する動きが活発になっている。例えば高機能性材料を開発する際、化合物データを用いて化学構造と物性・活性との間の関係をモデル化することで、化合物を合成したり合成後に物性値を測定したりする前に、化学構造から物性値を推定でき、逆に良好な物性値をもつ化学構造の設計もできる。さらに、合成条件とその合成結果としての材料特性との間の関係をデータからモデル化することで、望ましい特性を達成するための合成条件を探索できる。高機能性材料を製造する際、センサー等で容易に測定可能なプロセス変数と測定が困難な製品品質との関係をデータからモデル化することで、製品品質の値をリアルタイムに推定し、迅速かつ安定に制御・管理ができる。このように、高機能性材料などの開発データ、産業プラントにおける運転データなど、蓄積されたデータは非常に有用であるが、十分に活用しきれていない。
 本セミナーでは、各種データの使い方・解析の仕方を基礎から解説する。情報科学・データサイエンスに基づき、データから種々の材料の機能を予測するモデルを構築したり、構築したモデルを活用することで新たな材料の合成条件・プロセス条件を設計したりする方法を説明する。さらに、ケモ・マテリアルズ・プロセスインフォマティクス分野を中心にして豊富な応用事例も紹介し、実際に分子設計や材料設計を実演する。

  1. ケモインフォマティクス・マテリアルズインフォマティクス・プロセスインフォマティクスの基礎知識
    1. 機械学習・人工知能
    2. 定量的構造物性相関・定量的構造活性相関
    3. 化学構造生成
    4. 分子設計
    5. 材料設計
    6. プロセス設計
    7. プロセス管理
    8. ケモインフォマティクス
    9. マテリアルズインフォマティクス
    10. プロセスインフォマティクス
  2. 化学・産業データ解析の進め方・活用方法
    1. データの形式、記述子
    2. データの前処理
      1. 標準化
      2. 変数選択
      3. スムージング (平滑化)
    3. データの可視化・低次元化
      1. 主成分分析 (Principal Component Analysis, PCA)
      2. Generative Topographic Mapping (GTM)
      3. 多様体学習
      4. 可視化の性能を検討するための指標
    4. クラスタリング
      1. 階層的クラスタリング
      2. k平均法 (k-means)
      3. 混合ガウスモデル (Gaussian Mixture Model, GMM)
    5. クラス分類
      1. 線形判別分析 (Linear Discriminant Analysis, LDA)
      2. 決定木 (Decision Tree, TD)
      3. ランダムフォレスト (Random Forest, RF)
      4. サポートベクターマシン (Support Vector Machine, SVM)
    6. 回帰分析
      1. 最小二乗法による重回帰分析 (Multiple Linear Regression (MLR) or Ordinary Least Squares (OLS) )
      2. 部分的最小二乗法 (Partial Least Squares, PLS)
      3. 決定木 (Decision Tree, DT)
      4. ランダムフォレスト (Random Forest, RF)
      5. サポートベクター回帰 (Support Vector Regression, SVR)
    7. モデルの予測性能の向上
      1. アンサンブル学習
      2. 半教師あり学習 (半教師付き学習)
    8. モデルの適用範囲
      1. データ範囲
      2. データ中心からの距離
      3. データ密度
      4. アンサンブル学習
    9. モデルの逆解析
      1. グリッドサーチ
      2. サンプリング
      3. ベイズの定理
    10. 実行するためのプログラム紹介
  3. 分子設計・材料設計・プロセス設計・プロセス管理に関する最新の研究事例
    1. 化学空間の可視化に基づく分子設計
    2. 定量的構造物性 (活性) 相関モデルの逆解析に基づく分子設計
    3. 定量的構造物性 (活性) 相関モデルの適用範囲を考慮した分子設計
    4. 実験計画法による材料設計?目標達成確率に基づく適応的実験計画法?
    5. シミュレーションとインフォマティクス技術を活用したプロセス設計
  4. まとめ・質疑応答

講師

  • 金子 弘昌
    明治大学 理工学部 応用化学科
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

シーエムシーリサーチからの案内をご希望の方は、割引特典を受けられます。
また、2名様以上同時申込で全員案内登録をしていただいた場合、1名様あたり半額の 22,500円(税別) / 24,750円(税込)となります。

  • Eメール案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • Eメール案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)

アカデミック割引

  • 1名様あたり 24,000円(税別) / 26,400円(税込)

学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院の教員、学生に限ります。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/12/23 ChatGPT × Pythonによる統計解析とデータ分析・予測への応用 オンライン
2024/12/23 AI機械学習原理を理解するための数式読み方入門 オンライン
2024/12/24 時系列データの分析について : 基礎と応用 オンライン
2024/12/25 マテリアルズ・インフォマティクスの基礎と応用展開および研究事例 オンライン
2024/12/27 近赤外分光法の基礎と材料等の分析への応用 オンライン
2024/12/27 臨床試験を行う上で知っておくべき統計的知識 オンライン
2025/1/8 アレニウス式加速試験におけるプロット作成と予測値の取扱い オンライン
2025/1/9 賞味期限設定のためのアレニウス式を用いた加速試験のポイント オンライン
2025/1/10 分析法バリデーションコース (2日間) オンライン
2025/1/10 ICH Q2 (R2) 、Q14をふまえた承認申請時の分析法バリデーションの留意点 オンライン
2025/1/14 プラントのDX化による異常予兆検知、予知保全とその運用 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/15 Python実践データ分析/機械学習 オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/21 技術者・研究者のための実験計画法入門 オンライン
2025/1/22 マテリアルズ・インフォマティクスによる接着剤、粘着剤の配合設計と評価、解析 オンライン
2025/1/22 ベイズ推定を用いたデータ解析 オンライン
2025/1/23 医療機器QMSで有効な統計的手法とサンプルサイズ決定 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 プロセスインフォマティクスにおけるベイズ最適化の活用法と実施事例 オンライン

関連する出版物

発行年月
2024/1/12 世界のマテリアルズ・インフォマティクス 最新業界レポート
2023/12/27 キャピラリー電気泳動法・イオンクロマトグラフィーの分析テクニック
2023/12/27 実験の自動化・自律化によるR&Dの効率化と運用方法
2023/11/29 開発段階に応じたバリデーション実施範囲・品質規格設定と変更管理 - プロセス/分析法バリデーション -
2023/11/29 開発段階に応じたバリデーション実施範囲・品質規格設定と変更管理 - プロセス/分析法バリデーション - (製本版 + ebook版)
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2023/4/28 ケモインフォマティクスにおけるデータ収集の最適化と解析手法
2022/8/31 医療機器の設計開発における統計的手法とそのサンプルサイズ設定
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/12/30 実践Rケモ・マテリアル・データサイエンス
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/8/1 材料およびプロセス開発のためのインフォマティクスの基礎と研究開発最前線
2019/2/28 においを "見える化" する分析・評価技術
2019/1/31 マテリアルズ・インフォマティクスによる材料開発と活用集
2018/4/25 統計学的アプローチを活用した分析法バリデーションの評価及び妥当性
2017/5/10 分析法バリデーション実務集
2013/6/21 機械学習によるパターン識別と画像認識への応用