技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習を用いたスペクトルデータ解析と材料開発への適用

機械学習を用いたスペクトルデータ解析と材料開発への適用

オンライン 開催

視聴期間は2023年3月13日〜31日を予定しております。
お申し込みは2023年3月27日まで承ります。

概要

本セミナーでは、機械学習で基本的に用いられる「予測」「分類」「分布推定」「ベイズ最適化」技術の背景にある数学を簡単に解説し、「機械学習ポテンシャル」「スペクトル分類」「ピーク推定」等、マテリアルズ・インフォマティクスで用いられる機械学習の基礎とノウハウについて詳解いたします。

開催日

  • 2023年3月27日(月) 13時00分 2023年3月31日(金) 16時00分

受講対象者

  • 材料開発者
  • 実験データ解析手法の幅を広げたい方
  • スペクトル解析の背後にある数理の基礎を学びたい方
  • 解析ソフトウェア開発等に携わる方

修得知識

  • 機械学習を利用した材料スペクトルデータ解析に関する基礎
  • 機械学習を活用した研究手法に関する基礎

プログラム

 近年では物質・材料に関するスペクトルデータを大量に取得できる装置環境が整ってきているが、複雑な形状をとるものや、フィッティングにかかる手間などから網羅的に解析を実施することが困難になってきている。
 本講義では、取得したデータからの情報抽出のための機械学習活用について、機械学習の数理的な側面も交えながら基礎的な内容を紹介する

  1. マテリアルズ・インフォマティクス概要
    1. 機械学習の基礎
    2. 機械学習応用の流れと課題設定の重要性
    3. 代表的な機械学習応用事例の紹介
    4. 物質・材料データの特徴と注意点
    5. 「分かりたい」のか「見つけたい」のか?
    6. 情報科学市民権
    7. 物質科学の立場として忘れてはいけないこと
  2. スペクトルデータの低次元化とクラスター解析
    1. 高次元データとしてのスペクトルと低次元化の重要性
    2. 分類:教師あり学習と教師なし学習
    3. 特徴空間と類似度
    4. 特徴空間の解釈性と表現性
    5. 主成分解析によるスペクトルの低次元化
    6. k – means法によるスペクトルの分類
    7. 階層的クラスタリングによるスペクトルの分類
  3. 予測 (回帰) :予測モデルとモデル選択
    1. 予測・モデル選択の応用例
    2. モデル推定の種類 (最尤法, MAP推定, ベイズ推定)
    3. 確率論的にみた回帰と正則化
    4. 非線形モデリングの困難
    5. マルコフ連鎖モンテカルロ法によるパラメータ最適化
    6. 情報量基準によるモデル選択
    7. 解析事例
  4. スペクトル解析のためのEMアルゴリズムによるピーク検知
    1. ピーク検知のための処理フロー
    2. 非線形最小二乗法の困難
    3. 回帰と分布推定の違い
    4. ガウス分布の最尤推定
    5. EMアルゴリズムによる最尤推定
    6. スペクトル解析のための改良EMアルゴリズム
    7. 解析事例

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 45,000円 (税別) / 49,500円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。

「案内の希望」をご選択いただいた場合、1名様 36,000円(税別) / 39,600円(税込) で受講いただけます。
複数名で同時に申込いただいた場合、1名様につき 22,500円(税別) / 24,750円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 36,000円(税別) / 39,600円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 99,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 148,500円(税込)

アーカイブ配信セミナー

お申し込みの際、通信欄に「アーカイブ配信希望」の旨を記載ください。
アーカイブ配信セミナーをご希望の場合、以下の流れ・受講内容となります。

  • 当日のセミナーを、後日にお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • 配信開始となりましたら、改めてメールでご案内いたします。
  • 視聴サイトにログインしていただき、ご視聴いただきます。
  • 視聴期間は2023年3月13日〜31日を予定しております。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2023/12/5 生成AIの社内構築とR&D業務効率化への活用 オンライン
2023/12/6 粉体シミュレーションおよび機械学習の利活用の動きとその展望 オンライン
2023/12/7 マテリアルDXによる材料開発の効率化・高速化 オンライン
2023/12/7 抗菌・抗ウイルス・抗バイオフィルムのための材料表面設計と表面処理技術 オンライン
2023/12/8 研究開発部門へのDX推進に向けた各社取り組み事例とDB構築の進め方 オンライン
2023/12/8 卑金属のみを用いた固体高分子型水電解用酸素発生電極の開発 オンライン
2023/12/12 進化計算を利用した多目的最適化技術とその応用 オンライン
2023/12/13 機械学習を用いたプラント/製造装置の運転データ解析 オンライン
2023/12/14 生成AI・人工知能による特許調査、分析と活用の仕方 オンライン
2023/12/14 Orangeで楽してPythonで得するデータサイエンス入門編 オンライン
2023/12/15 Excel/Pythonによる多変量解析 超入門 オンライン
2023/12/15 電子実験ノート導入・管理コース オンライン
2023/12/15 クラウド型を含む電子実験ノート (ELN) による研究業務におけるデータ管理の課題の解決 オンライン
2023/12/18 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2023/12/19 インフォマティクスを活用した複合材料界面の設計と構造解析 オンライン
2023/12/20 R&D部門における実験データ共有システムの導入と効果的な利活用技術 オンライン
2023/12/21 後工程への情報の伝え方を考慮したプラスチック製品設計のトラブル未然防止策 オンライン
2023/12/21 化学者のための機械学習とPythonプログラミングの基礎・実習 オンライン
2023/12/21 業務での利用に適した進化的画像処理・認識のすべて オンライン
2023/12/22 AIニューラルネットワークが切り拓く次世代センシング技術 オンライン

関連する出版物

発行年月
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/30 水と機能性ポリマーに関する材料設計、最新応用
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/12/30 実践Rケモ・マテリアル・データサイエンス
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/8/1 材料およびプロセス開発のためのインフォマティクスの基礎と研究開発最前線
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 マテリアルズ・インフォマティクスによる材料開発と活用集
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2017/2/27 プラスチックの破損・破壊メカニズムと耐衝撃性向上技術
2013/8/1 ガラスの破壊メカニズムと高強度化