技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

確率的グラフィカルモデルの基礎とその応用

確率的グラフィカルモデルの基礎とその応用

~データ生成モデル、データマイニング、そして、人工知能への応用~
オンライン 開催

開催日

  • 2021年10月21日(木) 10時30分 16時30分

受講対象者

  • 確率的グラフィカルモデルに関連する技術者、研究者
    • 情報処理
    • システム
    • データ解析
    • ネットワーク
    • 画像処理
    • 音声処理
    • ロボット
    • 自然言語処理 など
  • データマイニングや機械学習に関心のある方
  • 新しい (将来の) データサイエンスの切り口を知りたい方
  • 確率・統計に基づくデータサイエンスに関心のある方

修得知識

  • 統計的機械学習理論の基礎理解と概要
  • 統計的機械学習の実装に至るまでの一通りの知識
  • データマイニングと人工知能に関する包括的な知識

プログラム

 本セミナーでは、確率的グラフィカルモデルと呼ばれる統計的機械学習モデルをテーマとして扱います。確率的グラフィカルモデルの利点は、なんと言っても、これ一つで多くのデータサイエンス (データマイニングや人工知能) ができるようになるという点です。これは、昨今の人工知能ブームにより盛り上がっているニューラルネットワークモデルとはその意味で一線を画すものです。データマイニングと人工知能を同時にこなすことのできる確率的グラフィカルモデルは、現在の人工知能の弱点 (例えば、作成した人工知能の意味解釈が人間では困難である、など) を補填する可能性を大いに秘めた技術であり、将来の人工知能の核にもなり得る技術と期待しています。
 ただ残念なことに、学術業界以外では、確率的グラフィカルモデルに対する認知はまだほとんど広がっていません。本講義では、初学者にも分かりやすいよう、統計的機械学習理論を学ぶ上で重要となるトピックは網羅的に解説し、理論の基礎から全体像、そして、応用に対する考え方に至るまでを習得できるようにします。また、初学者だけに限らず、統計的機械学習理論を多少聞きかじったけれども、しっかりと基礎部分を把握しておきたいという方にもピッタリな内容となっています。内容の性質上、数式が多数出現しますが、必要に応じて補足をしていくので特殊な専門知識は必要ありません。

  1. はじめに
    1. データマイニングと人工知能
    2. 機械学習とは何か?
      1. 教師あり学習
      2. 教師なし学習
    3. 深層学習概説
    4. データマイニングと人工知能の対比
    5. 統計的機械学習の目的とメリット
    6. 確率の基礎と例題
      1. 規格化条件
      2. 平均・分散
      3. 確率の和法則と積法則
      4. 確率の基礎を例題で理解する
  2. 統計的機械学習の基礎とマルコフ確率場
    1. ベイズ推定
    2. 統計的機械学習の枠組み
    3. マルコフ確率場
      1. 確率的グラフィカルモデルとは?
      2. ギブスサンプリング
      3. ボルツマンマシン
    4. マルコフ確率場の統計的機械学習の方法
      1. 最尤法
      2. 最尤法と情報理論
      3. EMアルゴリズム
    5. マルコフ確率場の問題点
    6. 問題解決のための近似的計算技術
      1. モンテカルロ積分法
      2. 最新のモンテカルロ積分法
      3. 確率伝搬法
    7. ガウス型マルコフ確率場
  3. マルコフ確率場の応用例 (データ生成モデル、データマイニング)
    1. 統計的重回帰分析
      1. 通常の重回帰分析
      2. マルコフ確率場に基づく重回帰分析
    2. 画像ノイズ除去
    3. 道路交通量の (ナウ・キャスト) 推定
    4. グラフマイニング
      1. スパースモデリングのアプロー
      2. 項目間の関連マップの抽出
  4. 人工知能への応用
    1. パターン認識問題とは?
    2. パターン認識問題のベイズ的定式化
    3. 人工知能からの知識発掘
      1. 事後分布による逆推定
      2. AIシステムが何を見ているのか?
  5. おわりに
    1. 本講座のまとめ
    2. 統計的機械学習の利点とこれから

講師

  • 安田 宗樹
    山形大学 大学院 理工学研究科 情報・エレクトロニクス専攻
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

シーエムシーリサーチからの案内をご希望の方は、割引特典を受けられます。
また、2名様以上同時申込で全員案内登録をしていただいた場合、1名様あたり半額の 22,500円(税別) / 24,750円(税込)となります。

  • Eメール案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • Eメール案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 100,000円(税別) / 110,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 150,000円(税別) / 165,000円(税込)

アカデミック割引

  • 1名様あたり 24,000円(税別) / 26,400円(税込)

学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院の教員、学生に限ります。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/13 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/16 AI機械学習に的を絞った行列・偏微分・確率密度の超入門 オンライン
2024/12/16 少ないデータによる異常検知技術の導入と活用方法 オンライン
2024/12/17 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2024/12/17 進化計算を利用した多目的最適化技術とその応用 オンライン
2024/12/19 小規模データに対する機械学習の効果的適用法 オンライン
2024/12/20 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/23 AI機械学習原理を理解するための数式読み方入門 オンライン
2024/12/23 ディープラーニングに基づく外観検査AI技術 オンライン
2024/12/24 Vision Transformerの仕組みとBEV Perception オンライン
2025/1/7 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/14 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン
2025/1/15 Python実践データ分析/機械学習 オンライン
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/22 ベイズ推定を用いたデータ解析 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 特許分析における生成AI/ChatGPT活用と競合他社の弱みの見つけ方 オンライン

関連する出版物

発行年月
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2010/2/22 画像理解・パターン認識の基礎と応用
1993/3/1 新しいサーボ制御の基礎と実用化技術