技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

深層学習による画像認識とその判断根拠の可視化 (視覚的説明)

Zoomを使ったライブ配信セミナー

深層学習による画像認識とその判断根拠の可視化 (視覚的説明)

オンライン 開催

開催日

  • 2021年3月1日(月) 10時00分 17時00分

受講対象者

  • 画像処理・物体認識に関連する技術者
    • デジタルカメラ、デジタルビデオカメラ
    • 印刷、カラーコピー機
    • テレビ・ディスプレイ
    • レーザ計測、位置決め
    • 医用画像処理、医療機器制御
    • 衛星画像処理
    • 超解像技術
    • ロボットのカメラ、制御
    • 外観検査装置
    • 非破壊検査装置
    • 車載カメラ
    • 防犯カメラ など

修得知識

  • 画像局所特徴量の基礎
    • SIFT
    • PCA-SIFT
    • GLOH
    • SURF
    • Randomized Trees
    • HOG
    • Haar-like
  • 統計的学習手法の基礎
    • AdaBoost
    • Real AdaBoost
  • 物体検出システムの構築

プログラム

  1. 画像認識の問題設定
    1. 物体検出タスク
    2. 画像分類タスク
    3. シーン理解:セマンティックセグメンテーションタスク
    4. 特定物体認識タスク
  2. ニューラルネットワークと逆誤差伝搬法
    1. ニューラルネットワーク (全結合)
    2. 多層パーセプトロン (MLP) の学習
    3. 勾配降下法
    4. 誤差関数
  3. 畳み込みニューラルネットワーク (CNN)
    1. 機械学習を用いた画像認識
    2. 畳み込み層
    3. 活性化関数
    4. プーリング層
    5. 全結合層
    6. 出力層
    7. CNNの推論過程、学習
    8. 従来の機械学習 VS 深層学習
    9. 学習サンプル数 VS 認識性能
    10. データ拡張
  4. CNNよる画像認識
    1. 一般物体認識 (分類)
      • AlexNet
      • VGG
      • GoogLeNet
      • ResNet
      • SENet
    2. 物体検出
      • Faster R-CNN
      • YOLO
      • SSD
      • M2Det
    3. セグメンテーション
      • SegNet
      • MNet
    4. 回帰
    5. マルチタスク学習
  5. 視覚的説明 (Explainable AI)
    1. 説明可能なAIに向けて:XAI
    2. 視覚的説明:アテンションマップの可視化
    3. Attention Branch Network
    4. Attention mapのファインチューニング
    5. 外観検査への適用
  6. 視覚的説明のロボット応用
    1. 深層強化学習によるロボットの自律移動
    2. Deep Q-Network
    3. 深層強化学習における判断根拠の可視化

講師

  • 藤吉 弘亘
    中部大学 工学部 ロボット理工学科
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 59,000円 (税別) / 64,900円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー