技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

次世代「機械学習」の基礎と応用

Zoomを使ったライブ配信セミナー

次世代「機械学習」の基礎と応用

オンライン 開催 PC実習付き

概要

本セミナーでは、機械学習に必要なデータの揃え方から、実際に機械学習に展開するかまでについて実例・ハンズオンを踏まえながら実施いたします。

開催日

  • 2020年12月16日(水) 12時30分16時30分

受講対象者

  • 新たに機械学習について学びたい方
  • 機械学習を自身の業務に活かしたい方

修得知識

  • 機械学習の具体的な手法
  • 機械学習に必要なデータの捉え方

プログラム

 ここ数年のAIブームで機械学習のハードルが下がり、誰でも機械学習は利用できるようになりました。一方で、機械学習において、もっとも重要な点が、機械学習ができるデータが揃っていることであり、多くの企業・組織が現状不十分であると認識しています。
 本セミナーでは、こうしたデータをどうそろえるかという点から実際にどう機械学習にまで展開するかまでについて実例・ハンズオンを踏まえながら実施します。

  1. 次世代機械学習について
    1. 機械学習とは
    2. これまでの機械学習
    3. これからの機械学習
    4. データの前処理とは
    5. 特徴量の抽出
    6. 数値・テキスト・画像データの特徴量抽出
    7. 機械学習アルゴリズム
  2. 数値データの取扱い
    1. カウントデータ
    2. 連続・離散
    3. 外れ値除去
    4. 対数変換
    5. 正規分布と正規化
  3. テキストデータの取扱い
    1. テキストデータと特徴量
    2. BoW
    3. nグラム
    4. 出現頻度による特徴量の抽出
    5. TF – IDF
  4. クラスタリングによるデータのスリム化
    1. クラスタリング分析
    2. k平均法
  5. 次元削減によるデータのスリム化
    1. 次元削減と機械学習
    2. 主成分分析とは?
    3. 主成分分析による次元削減
    4. 主成分分析のケーススタディ
  6. 画像データの取扱い
    1. 画像データとは
    2. 畳み込みニューラルネットワーク
    3. 学習済モデル
    4. 転移学習

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 45,000円 (税別) / 49,500円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込) (案内をご希望の場合に限ります)

案内割引・複数名同時申込割引について

R&D支援センターからの案内登録をご希望の方は、割引特典を受けられます。
案内および割引をご希望される方は、お申込みの際、「案内の希望 (割引適用)」の欄から案内方法をご選択ください。
複数名で同時に申込いただいた場合、1名様につき 22,500円(税別) / 24,750円(税込) で受講いただけます。

  • R&D支援センターからの案内を希望する方
    • 1名様でお申し込みの場合 : 1名で 42,000円(税別) / 46,200円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • R&D支援センターからの案内を希望しない方
    • 1名様でお申し込みの場合 : 1名で 45,000円(税別) / 49,500円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 99,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 148,500円(税込)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/2/25 データ分析のポイントと生成AIの活用 オンライン
2026/2/26 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/26 AI・ロボットを活用した自律型材料研究開発 オンライン
2026/2/26 実務に役立つ統計解析の基本と活用 オンライン
2026/2/26 生成AIを活用した研究データ解析と可視化手法 オンライン
2026/2/26 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/2/27 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/27 医薬品開発における生存時間解析 オンライン
2026/2/27 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 サンプリング試験 (抜取検査) の全体像を把握し適切に設計・運用する具体的ノウハウ オンライン
2026/3/2 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/3/5 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/3/6 Google Gemini3 plus×Workspaceで実現する生成AIによる統計解析・データ分析 オンライン
2026/3/9 ベイズ統計モデリングの基本的な考え方とモデルの立て方、結果の解釈 オンライン
2026/3/9 AI外観検査の最新動向と導入、運用ポイント オンライン
2026/3/10 スペクトル・イメージデータへの機械学習の応用 オンライン
2026/3/10 Pythonを用いた高分子材料の画像解析入門 オンライン
2026/3/12 Excelで始める実践データ分析 オンライン
2026/3/12 ICH新ガイドラインに対応する分析法開発と分析法バリデーションの基礎と実践 オンライン

関連する出版物

発行年月
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/8/31 医療機器の設計開発における統計的手法とそのサンプルサイズ設定
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2018/4/25 統計学的アプローチを活用した分析法バリデーションの評価及び妥当性
2017/5/10 分析法バリデーション実務集
2013/6/21 機械学習によるパターン識別と画像認識への応用