技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習におけるパターン認識手法

機械学習におけるパターン認識手法

~SVMの理論と応用~
東京都 開催 会場 開催

開催日

  • 2020年3月18日(水) 10時30分 16時30分

修得知識

  • 機械学習の基本となる教師あり学習の考え方
  • 確率的な考え方 (ベイズ推定) の基本
  • LIBSVMを例としたサポートベクターマシンの使用法
  • 未学習データに対する性能 (汎化性、本当の性能と言ってよい) 向上のためのポイント

プログラム

 深層学習に代表される人工知能技術が注目されているが、その基本となっているのはデータの属性に基づく分類手法であることには変わりはない。
 本講座では、まず、データ分類の基礎となるデータ間の類似性についての考え方を紹介し、確率的な誤り最小化、教師あり学習など、機械学習の基本となる手法を概観する。
 最後に、教師あり学習手法の例としてサポートベクターマシンを取り上げ、その代表的なライブラリであるLIBSVMの使用法を紹介するとともに、実際の応用例も紹介する。

  1. パターン認識技術の概要
  2. 距離と類似性
    1. 特徴料
    2. 距離尺度
    3. 類似性
    4. データの正規化
  3. 最近傍法とベイズ推定
    1. 最近傍法
    2. 確率的な考え方とベイズ推定
      1. 確率分泌
      2. 事前確率、条件付確率、事後確率
      3. 期待損失と最尤推定
  4. 線形識別手法
    1. ベイズ推定と線形識別手法
    2. 損失関数
    3. 最適識別面とサポートベクターマシン (SVM)
    4. ソフトマージンSVMと汎化性
  5. 非線形識別手法
    1. 非線形識別手法
    2. カーネル法
    3. カーネルSVM
    4. カーネルSVMの汎化性
  6. LIBSVM
    1. LIBSVMの概要
    2. LIBSVMの使用例
  7. 汎化性向上手法
    1. 特徴選択
    2. サンプル最適化
  8. まとめ、応用例など

講師

  • 西田 健次
    東京工業大学 工学院 システム制御系 システム制御コース
    特任准教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 50,600円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時
2020/4/15 化学研究と人工知能技術の融合に関する基礎と応用事例 東京都
2020/4/17 AIを利用した医療機器における国内外の市場動向および開発のポイント 東京都
2020/4/21 Pythonで学ぶ「外れ値検出」の基礎 東京都
2020/4/23 AI / IoT技術における日本・海外の特許動向と特許化のポイント 東京都
2020/4/24 メーカーにおけるAI・IoTに関するデータ利活用の法務の最新事情 東京都
2020/4/24 ベイズ最適化の基礎と応用およびPythonによる実装 東京都
2020/4/27 時系列データ分析の基礎・モデル化と異常検知・機械学習への応用 東京都
2020/4/28 カルマンフィルタの基礎から応用まで 東京都
2020/5/12 ドライバ状態モニタリング/センシング技術と統計処理・機械学習の活用 東京都
2020/5/13 音による故障検知および故障予知 東京都
2020/5/13 蒸留技術の要点とAIを活用した応用研究 東京都
2020/5/14 製造現場で使える実用的な人工知能技術とその実践 東京都
2020/5/14 AIによる顔画像識別技術の基礎原理と実際 東京都
2020/5/15 自然言語処理の基礎と活用方法 東京都
2020/5/18 実務に使えるスモールデータ解析 東京都
2020/5/18 ディープラーニング入門講座 : ディープラーニングの考え方と重要な基礎技術紹介 東京都
2020/5/19 機械学習を用いた分析スペクトルデータ解析の進め方 東京都
2020/5/19 AIを利用した医療機器開発における医療用プログラムの薬事規制 東京都
2020/5/20 事業化成功・失敗例を踏まえたAI (人工知能) を用いた医療機器開発戦略とレギュレーション対応 東京都
2020/5/21 強化学習の基礎とPythonによるアルゴリズム実装 東京都