技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

小規模データセットのための実践的ディープラーニング

大量のデータが集められないときの

小規模データセットのための実践的ディープラーニング

東京都 開催 会場 開催

開催日

  • 2019年6月27日(木) 11時00分17時00分

プログラム

 ディープラーニングはデータから帰納的に識別モデルを構築するため、十分な性能を得るためには大量のデータを集めなければならない。しかし実用上、目的に合わせて大量のデータを収集することは非常に困難である。
 そのため

  • 識別対象に対する知識を使うことでディープラーニングに制約を課す (データ拡張、深層生成モデル)
  • 別のデータで得られた知見を応用する (ドメイン適応)

などの工夫を行うことで、比較的少ないデータ量でも悪くない性能を達成することができる。
 データ拡張とはデータに手を加えて量を増やすことである。例えば、自動車の画像は拡大縮小・左右反転させても自動車として識別されてほしい。そのような操作を加えることで、元の画像の大きさに依存せずに、普遍的な特徴を学習する。またドロップアウト (dropout) のように、データにノイズを加える手法もある。それだけでなく、一部を切り取ったりくっつけたりすることもある。なぜこのような手法が有効なのか、理論的な背景も含めて説明する。
 また深層生成モデル (変分自己符号化器VAEや敵対的生成ネットワークGAN) はリアルな擬似データを作ることができるが、この擬似データを追加の学習データにすることもできる。また深層生成モデルそのものを分類に使うことで、小規模データの分類も可能である。
 ドメイン適応は目的以外に大規模データセットが存在するときに有効な方策である。 ImageNetのような大規模データで学習した特徴量を流用したり、ラベルを付与したデータの情報から、ラベルを与えていないデータを学習を手助けしたりできる。
 これらの手法について、いくつかの実例とともに紹介していく。

  1. ディープラーニング入門
    1. ディープラーニングとは
    2. ディープラーニングの現状
    3. データ量と性能の関係
  2. データの増やし方
    1. 一般的なデータ拡張とその意味
    2. 一般的でないデータ拡張と用途
    3. 生成モデルを用いたデータ拡張
    4. 生成モデルを用いた設計
  3. ドメイン適応と転移学習
    1. 転移学習
    2. ドメイン適応
    3. ドメイン適応を用いたデータ拡張
  4. その他の話題

講師

  • 松原 崇
    北海道大学 大学院 情報科学研究院
    教授

会場

林野会館
東京都 文京区 大塚3-28-7
林野会館の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 50,760円 (税込)
1口
: 59,000円 (税別) / 63,720円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/6 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/13 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 Pythonではじめる機械学習応用講座 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/16 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/22 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/13 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン