技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

小規模データセットのための実践的ディープラーニング

大量のデータが集められないときの

小規模データセットのための実践的ディープラーニング

東京都 開催 会場 開催

開催日

  • 2019年6月27日(木) 11時00分 17時00分

プログラム

 ディープラーニングはデータから帰納的に識別モデルを構築するため、十分な性能を得るためには大量のデータを集めなければならない。しかし実用上、目的に合わせて大量のデータを収集することは非常に困難である。
 そのため

  • 識別対象に対する知識を使うことでディープラーニングに制約を課す (データ拡張、深層生成モデル)
  • 別のデータで得られた知見を応用する (ドメイン適応)

などの工夫を行うことで、比較的少ないデータ量でも悪くない性能を達成することができる。
 データ拡張とはデータに手を加えて量を増やすことである。例えば、自動車の画像は拡大縮小・左右反転させても自動車として識別されてほしい。そのような操作を加えることで、元の画像の大きさに依存せずに、普遍的な特徴を学習する。またドロップアウト (dropout) のように、データにノイズを加える手法もある。それだけでなく、一部を切り取ったりくっつけたりすることもある。なぜこのような手法が有効なのか、理論的な背景も含めて説明する。
 また深層生成モデル (変分自己符号化器VAEや敵対的生成ネットワークGAN) はリアルな擬似データを作ることができるが、この擬似データを追加の学習データにすることもできる。また深層生成モデルそのものを分類に使うことで、小規模データの分類も可能である。
 ドメイン適応は目的以外に大規模データセットが存在するときに有効な方策である。 ImageNetのような大規模データで学習した特徴量を流用したり、ラベルを付与したデータの情報から、ラベルを与えていないデータを学習を手助けしたりできる。
 これらの手法について、いくつかの実例とともに紹介していく。

  1. ディープラーニング入門
    1. ディープラーニングとは
    2. ディープラーニングの現状
    3. データ量と性能の関係
  2. データの増やし方
    1. 一般的なデータ拡張とその意味
    2. 一般的でないデータ拡張と用途
    3. 生成モデルを用いたデータ拡張
    4. 生成モデルを用いた設計
  3. ドメイン適応と転移学習
    1. 転移学習
    2. ドメイン適応
    3. ドメイン適応を用いたデータ拡張
  4. その他の話題

講師

  • 松原 崇
    大阪大学 大学院 基礎工学研究科
    准教授

会場

林野会館
東京都 文京区 大塚3-28-7
林野会館の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 50,760円 (税込)
1口
: 59,000円 (税別) / 63,720円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/2/4 カルマンフィルタの実践 オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/6 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/7 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/10 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン
2025/2/10 着実にステップアップできる多変量解析講座 オンライン
2025/2/12 実験短縮、研究開発効率化へのMI、生成AI、ロボット導入と活用のポイント オンライン
2025/2/12 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/12 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/2/17 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/19 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/2/20 人工知能技術:MTシステム 超入門 オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/25 AI・LLMの学習時間短縮と性能、回答精度向上 オンライン
2025/2/26 Vision Transformerの仕組みとBEV Perception オンライン
2025/2/26 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン
2025/2/27 医薬品CMC・製造におけるAI・機械学習・データ活用の課題と導入のポイント オンライン