技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

逆強化学習

逆強化学習

東京都 開催 会場 開催 デモ付き

開催日

  • 2018年12月10日(月) 10時30分 16時30分

プログラム

  1. 第1部 逆強化学習の基礎知識
    1. マルコフ決定過程
      • 平均とマルコフ性 (MP)
      • 逐次平均表現とMP
      • マルコフ報酬過程
      • マルコフ決定過程
    2. Bellman方程式の導出:
      • 平均から決定型Bellman方程式の導入:
      • 平均表現と価値関数の導入:
      • 確率型Bellman方程式の導出:
        1. 行動状態価値関数の導入:
        2. 確率型ベルマン方程式の導出
        3. 遷移確率関数 T (r ( S’) , S‘│s,a ) の極意
        4. グリッドワード問題の応用
    3. 動的計画法
      • ε = 1-Greedy反復方策
      • ε = 0-Greedy方策反復法 (On-Policy)
      • ε = 0-Greedy価値反復法 (Off-Policy)
    4. 逆強化学習の基本概念の導入
      • 報酬関数の定義
      • 報酬関数による価値関数の推定
  2. 第2部 逆強化学習の解法:線形計画最適化逆強化学習手法
    1. 線形計画最適化逆強化学習手法の導入
    2. 線形計画逆強化学習手法の定式化
    3. 線形計画逆強化学習手法のコーディング要領
    4. 線形計画逆強化学習手法の応用事例の紹介
  3. 第3部 逆強化学習の解法:最大エントロピー逆強化学習手法
    1. 関数近似の基本概念
    2. 関数近似モデルを用いた報酬の表現
    3. 機械学習による報酬関数の回帰
    4. 最大エントロピーを取り入れた報酬誤差関数の設計
    5. 熟練者による行動確率教師データの生成
    6. 最大エントロピー逆強化学習手法のコーディング要領
    7. 最大エントロピー逆強化学習手法の応用事例の紹介
  4. 第4部 逆強化学習の解法:深層NN最大エントロピー逆強化学習手法
    1. 深層NN (neural network) の導入
    2. 深層NN最大エントロピーを取り入れた報酬誤差関数の設計
    3. 熟練者による状態頻度教師データの生成
    4. 深層NN最大エントロピー逆強化学習手法のコーディング要領
    5. 深層NN最大エントロピー逆強化学習手法の応用事例の紹介
  5. 第5部 逆強化学習の展望と関連技術の紹介

講師

  • 曽我部 東馬
    電気通信大学 i-パワードエネルギーシステム研究センター 基盤理工学専攻
    准教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 49,680円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/30 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/5/7 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/5/7 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/5/13 異常検知への生成AI活用と判断の標準化、高精度化 オンライン
2025/5/15 化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法 オンライン
2025/5/16 画像認識技術入門 オンライン
2025/5/19 AI分野における特許戦略 オンライン
2025/5/20 マテリアルズインフォマティクス・第一原理計算の基礎と材料研究への応用 オンライン
2025/5/20 Pythonによるデータ解析の基礎と実務への応用 オンライン
2025/5/21 生成AI×多変量解析:革新的学習と実践 オンライン
2025/5/23 AI分野における特許戦略 オンライン
2025/5/27 分子シミュレーションの基礎と高分子材料の研究・開発の効率化への展開 オンライン
2025/5/28 生成AI×多変量解析:革新的学習と実践 オンライン
2025/5/28 化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法 オンライン
2025/6/4 マテリアルズインフォマティクスのためのデータ解析 オンライン
2025/6/6 時系列データ分析の基礎と実務への応用 オンライン
2025/6/6 AI利活用におけるEU AI法の影響と今後の課題 オンライン
2025/6/9 現場で使えるマテリアルズ・インフォマティクス実践講座 オンライン
2025/6/9 時系列データによる将来予測、異常検知への応用 オンライン
2025/6/12 Pythonを活用したデータ分析手法 オンライン