技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

逆強化学習

逆強化学習

東京都 開催 会場 開催 デモ付き

開催日

  • 2018年12月10日(月) 10時30分 16時30分

プログラム

  1. 第1部 逆強化学習の基礎知識
    1. マルコフ決定過程
      • 平均とマルコフ性 (MP)
      • 逐次平均表現とMP
      • マルコフ報酬過程
      • マルコフ決定過程
    2. Bellman方程式の導出:
      • 平均から決定型Bellman方程式の導入:
      • 平均表現と価値関数の導入:
      • 確率型Bellman方程式の導出:
        1. 行動状態価値関数の導入:
        2. 確率型ベルマン方程式の導出
        3. 遷移確率関数 T (r ( S’) , S‘│s,a ) の極意
        4. グリッドワード問題の応用
    3. 動的計画法
      • ε = 1-Greedy反復方策
      • ε = 0-Greedy方策反復法 (On-Policy)
      • ε = 0-Greedy価値反復法 (Off-Policy)
    4. 逆強化学習の基本概念の導入
      • 報酬関数の定義
      • 報酬関数による価値関数の推定
  2. 第2部 逆強化学習の解法:線形計画最適化逆強化学習手法
    1. 線形計画最適化逆強化学習手法の導入
    2. 線形計画逆強化学習手法の定式化
    3. 線形計画逆強化学習手法のコーディング要領
    4. 線形計画逆強化学習手法の応用事例の紹介
  3. 第3部 逆強化学習の解法:最大エントロピー逆強化学習手法
    1. 関数近似の基本概念
    2. 関数近似モデルを用いた報酬の表現
    3. 機械学習による報酬関数の回帰
    4. 最大エントロピーを取り入れた報酬誤差関数の設計
    5. 熟練者による行動確率教師データの生成
    6. 最大エントロピー逆強化学習手法のコーディング要領
    7. 最大エントロピー逆強化学習手法の応用事例の紹介
  4. 第4部 逆強化学習の解法:深層NN最大エントロピー逆強化学習手法
    1. 深層NN (neural network) の導入
    2. 深層NN最大エントロピーを取り入れた報酬誤差関数の設計
    3. 熟練者による状態頻度教師データの生成
    4. 深層NN最大エントロピー逆強化学習手法のコーディング要領
    5. 深層NN最大エントロピー逆強化学習手法の応用事例の紹介
  5. 第5部 逆強化学習の展望と関連技術の紹介

講師

  • 曽我部 東馬
    電気通信大学 i-パワードエネルギーシステム研究センター 基盤理工学専攻
    准教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 49,680円 (税込)
1口
: 57,000円 (税別) / 61,560円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/8 Pythonによる特許データ分析とIPランドスケープへの活用 オンライン
2025/4/8 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/9 マテリアルズインフォマティクス (MI) の最新動向と小規模データ駆動型MIの展開 オンライン
2025/4/10 Vision Transformerの仕組みとBEV Perception オンライン
2025/4/11 Excel・Pythonで学ぶ製造業向けデータ解析と実務への応用 オンライン
2025/4/11 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/15 自動運転・運転支援に向けた各種センサーを用いた周辺環境認識技術 オンライン
2025/4/16 異常検知・学習データ作成のための生成AI活用 オンライン
2025/4/16 Pythonによる機械学習の基礎と実践 オンライン
2025/4/16 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/17 スパース推定の基礎、本質の把握・理解と実装応用技術への展開 オンライン
2025/4/18 実験計画法・ベイズ最適化を用いた効率的な実験デザイン オンライン
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 ベイズ推定を用いたデータ解析 オンライン
2025/4/25 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/4/25 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/4/30 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/5/6 ベイズ推定を用いたデータ解析 オンライン