技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Pythonではじめる機械学習入門講座

Pythonではじめる機械学習入門講座

~Windows, Mac, Linux 実習対応~
東京都 開催 会場 開催 PC実習付き

開催日

  • 2017年10月26日(木) 10時30分16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • Pythonの基本的なコーディング方法
  • Pythonの各種ライブラリの活用方法
  • 代表的な機械学習 (教師あり学習,教師なし学習) の基礎理論
  • Pythonによる機械学習アルゴリズムの実装方法
  • 機械学習によるデータ処理・分析・可視化方法

プログラム

 純粋に最近流行りのPythonを学びたい人から、業務でデータ処理・解析をしたい人まで、幅広い方を対象とします。
 特に、日々大量のデータを扱っていて、そのデータの山から知識を引き出したいと思っている方が最適な受講対象者となります。
 Pythonでコーディングした経験がない人も歓迎しますが、演習を通して学んでいきますので、他の言語によるプログラミングの経験や知識のある方が望ましいです。

  1. はじめに
  2. 演習環境の構築
    1. Pythonのインストール
    2. 各種ライブラリのインストール
      • NumPy
      • SciPy
      • matplotlib
      • IPython
      • pandas
      • mglearn
      • scikit-learn
  3. Python入門講座
    1. Pythonの特徴
    2. Pythonのコーディング方法
    3. 各種ライブラリの使い方
    4. サンプルコードを用いた実践演習
  4. 教師あり学習
    1. 概要
    2. クラス分類
    3. 回帰
    4. 汎化と過剰適合
    5. k – 最近傍法
    6. 線形モデル
    7. ナイーブベイズ分類器
    8. 決定木
    9. サポートベクトルマシン
    10. ニューラルネットワーク
  5. 教師なし学習
    1. 概要
    2. 前処理
    3. スケール変換
    4. 次元削減
    5. 特徴量抽出
    6. k-means法
    7. 凝集型クラスタリング
    8. DBSCAN
  6. まとめ
  7. 質疑応答・名刺交換

会場

江東区産業会館

第5展示室

東京都 江東区 東陽4丁目5-18
江東区産業会館の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,278円 (税別) / 49,980円 (税込)

持参品

本セミナーでは、演習を行いますので、以下の条件を満たしたノートパソコンを持参して下さい。

  • プラットフォームは、Windows、Linux、MacOSを問いません。
  • 可能であれば、事前にPython 3.xをインストールしておいて下さい。インストーラとしては、Anacondaを推奨します。
  • 可能であれば、事前に各種ライブラリ (NumPy、SciPy、matplotlib、IPython、pandas、mglearn、scikit – learn) をインストールしておいて下さい。
  • 演習で使用するライブラリは、USBメモリで準備しておきますが、万が一に備えて、ノートパソコンは無線LAN機能を搭載したものを推奨します。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/12/23 データ駆動科学基礎とPythonによる実践 オンライン
2025/12/24 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2025/12/24 データ駆動科学基礎とPythonによる実践 オンライン
2026/1/6 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/13 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/15 Pythonではじめる機械学習応用講座 オンライン
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/15 Pythonを用いた実験計画法とその最適化 オンライン
2026/1/16 強化学習の基礎から最新動向と機械制御への応用 オンライン
2026/1/19 Excel/Pythonを活用した製造現場の品質データ分析入門 オンライン
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (2日間) オンライン
2026/1/22 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (基礎編) オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 Pythonを用いた実験計画法とその最適化 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン

関連する出版物