技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

Pythonで学ぶ機械学習の実践

Pythonで学ぶ機械学習の実践

東京都 開催 会場 開催 PC実習付き

開催日

  • 2017年8月29日(火) 10時00分 16時30分

受講対象者

  • 機械学習やディープラーニングに取り組んで間もない方
  • Python等のツールを使いたい方、使いこなしたい方
  • Pythonの初心者

修得知識

  • 機械学習の体系的理解 (俯瞰的知識)
  • 代表的な教師あり学習手法とその理論的背景、実運用 (実習を通じて)
  • ディープラーニングの基本的な考え方と実運用の指針 (実習を通じて)

プログラム

 本セミナーでは、機械学習の基本的な教師あり学習手法の考え方や理論的背景の説明とともに、Pythonを用いた簡単な実習を交えて機械学習の理解を深めます。昨今のAIブームの火付け役とも言えるディープラーニングは強力な学習手法ですが、万能ではありません。問題の特性をよく理解して適切な機械学習手法を選択し、適切に用いることが重要です。これから本格的な勉強を始める前に概要と雰囲気を掴むには最適です。

  1. 機械学習の概要
    1. ビッグデータ時代
    2. 機械学習とは?
    3. 最近の例
    4. 機械学習の分類
    5. 教師あり学習
      1. 識別
      2. 回帰
    6. 教師なし学習
      1. モデル推定
      2. パターンマイニング
    7. 半教師あり学習
    8. 深層学習 (ディープラーニング)
    9. 強化学習
    10. 機械学習の基本的な手順
      1. 前処理
      2. 評価基準の設定:クロスバリエーション
      3. 簡単な識別器:k-近傍法
      4. 評価指標:F値,ROC曲線
    11. k-近傍法を用いた実習:機械学習の基本的な手順の確認
  2. 識別 (1) :ベイズ学習
    1. 統計的機械学習とは
    2. 学習データの対数尤度
    3. 1次元2値の場合
    4. ナイーブベイズ分類器
    5. ベイジアンネットワーク
    6. 簡単な例
    7. ベイジアンネットワークの構成
    8. ベイジアンネットワークを用いた識別
    9. ナイーブベイズ分類器を用いた実習
  3. 識別 (2) :線形識別モデル
    1. 識別モデル
    2. ロジスティック識別概要
    3. ロジスティック識別の導出
    4. ロジスティック識別器の学習
    5. 確率的最急勾配法
    6. 正則化
    7. ロジスティック識別器を用いた実習
  4. 識別 (3) :サポートベクトルマシン
    1. サポートベクトルマシンとは
    2. マージン最大化のための定式化
    3. マージン最大化とする識別面の計算
    4. ソフトマージン
    5. カーネル関数
    6. 簡単なカーネル関数の例
    7. 入れ子交差検証によるハイパーパラメータ調整
    8. サポートベクトルマシンを用いた実習
  5. 識別 (4) :パーセプトロンから深層学習まで
    1. 単純パーセプトロン
    2. 誤り訂正学習
    3. 最小二乗法による学習
    4. 多層ニューラルネットワーク
    5. 逆誤差伝搬法による学習
    6. 深層学習とは
      1. 従来の識別学習との違い
      2. 深層学習の分類
      3. 最近の応用例
    7. 多階層ニューラルネットワークの学習における問題
    8. 自己符号化器 (AutoEncoder) による事前学習
    9. DropOut法による過学習の抑制
    10. 自己符号化器を用いた深層学習による実習
    • 質疑応答

講師

  • 福井 健一
    大阪大学 産業科学研究所 知能アーキテクチャ研究分野
    准教授

会場

大田区産業プラザ PiO

6F C会議室

東京都 大田区 南蒲田1-20-20
大田区産業プラザ PiOの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 42,750円 (税別) / 46,170円 (税込)
複数名
: 35,750円 (税別) / 38,610円 (税込)

持参品

  • ノートパソコンをご持参下さい。 (Windows, Macどちらでも可)
    事前に以下のインストールをお願い致します。
  • 要インストールソフト
    • Anaconda (Python 3.6バージョン)
      https://www.continuum.io/downloads
    • Chainer
      http://chainer.org
    • Anacondaインストール後に,コマンドラインから “pip install chainer” でインストール可

複数名同時受講の割引特典について

  • 2名で参加の場合、1名につき 7,000円(税別) / 7,560円(税込) 割引
  • 3名で参加の場合、1名につき 10,000円(税別) / 10,800円(税込) 割引
  • 同一法人内(グループ会社でも可)による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/2/10 生成AI・LLM活用へのデータ整理、システム構築とRAGを用いた検索精度向上 オンライン
2025/2/10 着実にステップアップできる多変量解析講座 オンライン
2025/2/12 実験短縮、研究開発効率化へのMI、生成AI、ロボット導入と活用のポイント オンライン
2025/2/12 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/2/12 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/2/14 CMOSイメージセンサの基礎講座 オンライン
2025/2/17 目的に応じた統計手法の選択とデータ解析のポイント オンライン
2025/2/19 ベイズ統計及びベイズモデリングの基本的な考え方とその実践・活用 オンライン
2025/2/19 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/2/20 人工知能技術:MTシステム 超入門 オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編・後編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (前編) オンライン
2025/2/21 Python を用いたスペクトルデータ解析 (後編) オンライン
2025/2/21 CMOSイメージセンサの基礎講座 オンライン
2025/2/25 AI・LLMの学習時間短縮と性能、回答精度向上 オンライン
2025/2/25 反応装置・プロセス設計の基礎とスケールアップの留意点 オンライン
2025/2/26 ChatGPTによる多変量解析の進め方 オンライン
2025/2/26 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン
2025/2/27 医薬品CMC・製造におけるAI・機械学習・データ活用の課題と導入のポイント オンライン
2025/3/4 マテリアルズインフォマティクスの動向と小規模・実験データへの応用 オンライン

関連する出版物