技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

時系列データ解析の基礎と進め方のポイント

時系列データ解析の基礎と進め方のポイント

~時系列データの特徴から前処理・特徴抽出・モデル化手法、実装技術を解説~
オンライン 開催 PC実習付き

概要

本セミナーは、時系列データの前処理、多変量を含めた時系列データからの特徴抽出、これらの解析手法に加え、機械学習を活用した予測モデルの適用について、Pythonを使用した解析の演習を交えて解説いたします。

配信期間

  • 2026年2月27日(金) 10時30分2026年3月9日(月) 16時30分

お申し込みの締切日

  • 2026年2月27日(金) 10時30分

受講対象者

  • 時系列データの処理や機械学習の適用に関心がある方
  • IoT・製造業の技術者
  • データサイエンティスト
  • 機械学習エンジニア
  • 交通・物流業界の関係者
  • Pythonを使ったデータ処理を学びたいエンジニア・研究者

修得知識

  • 時系列データの前処理と特徴抽出の方法
  • 機械学習による予測・異常検知の技術
  • Pythonを使った実践的なデータ解析スキル
  • 実務への応用力
    • 需要予測
    • 設備保全など

プログラム

 センサ技術の進歩などにより、様々な分野で高頻度・高精度な時系列データが得られるようになった。これに伴い、膨大なデータの処理と解析が重要な課題となっている。時系列データによる予測は、設備保全、異常検知、需要予測、交通予測など多くの場面で必要とされる。ただし、これらのデータを適切に処理・解析しなければ、有効活用できない。
 本講演では、時系列データの前処理、特徴抽出、機械学習による予測モデルの活用について紹介する。また、Pythonを用いて時系列データの前処理や特徴抽出、予測モデルの構築方法を学ぶ。

  1. 時系列データ解析の必要性
    1. 時系列データの重要性
    2. センサ技術の進歩とデータ活用
  2. 基本概念
    1. 時系列データとは何か
    2. 特徴や他のデータとの違い
    3. データの量・質・処理の難しさ
  3. 時系列データ解析処理のすすめ方
    1. 前処理方法
    2. 特徴量エンジニアリング
    3. モデル構築 (選択・学習)
    4. 評価・チューニング・応用
  4. 機械学習による時系列データ処理
    1. 予測・異常検知手法
    2. 使用するアルゴリズムの概要
  5. Pythonによる実践
    1. 使用するライブラリとツール
    2. 解析例
  6. 応用事例の紹介
    1. AIを利用した外観検査
    2. 機器・設備の異常検知・故障予知
  7. まとめ
    • 質疑応答

講師

  • 茂木 和弘
    群馬大学 大学院 理工学府 理工学部 理工学教育センター
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 45,000円 (税別) / 49,500円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、1名あたり 45,000円(税別) / 49,500円(税込) で受講いただけます。
  • 5名様以降は、1名あたり 30,000円(税別) / 33,000円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 99,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 148,500円(税込)
    • 4名様でお申し込みの場合 : 4名で 180,000円(税別) / 198,000円(税込)
    • 5名様でお申し込みの場合 : 5名で 210,000円(税別) / 231,000円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 請求書は、代表者にご送付いたします。
  • 他の割引は併用できません。

アカデミック割引

  • 1名様あたり 30,000円(税別) / 33,000円(税込)

日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。

  • 学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院、短期大学、附属病院、高等専門学校および各種学校の教員、生徒
  • 病院などの医療機関・医療関連機関に勤務する医療従事者
  • 文部科学省、経済産業省が設置した独立行政法人に勤務する研究者。理化学研究所、産業技術総合研究所など
  • 公設試験研究機関。地方公共団体に置かれる試験所、研究センター、技術センターなどの機関で、試験研究および企業支援に関する業務に従事する方
  • 支払名義が企業の場合は対象外とさせていただきます。
  • 企業に属し、大学、公的機関に派遣または出向されている方は対象外とさせていただきます。

アーカイブ配信セミナー

  • 当日のセミナーを、後日にお手元のPCやスマホ・タブレッドなどからご視聴・学習することができます。
  • 配信開始となりましたら、改めてメールでご案内いたします。
  • 視聴サイトにログインしていただき、ご視聴いただきます。
  • 視聴期間は2026年2月27日〜3月9日を予定しております。
    ご視聴いただけなかった場合でも期間延長いたしませんのでご注意ください。
  • セミナー資料は別途、送付いたします。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (2日間) オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (基礎編) オンライン
2026/1/23 脳波計測の基礎と応用・利用技術の最新動向 オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 外観検査 (2日間) オンライン
2026/1/26 Pythonを用いた実験計画法とその最適化 オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/27 AIの選択・精度・効率・構造・コストなどの最適化原理 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 ディジタルフィルタを理解する オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/29 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (実践テクニック・応用編) オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/10 制御のためのシステム同定 (アドバンスト編) オンライン
2026/2/12 生成AI・AIエージェントを活用した知財業務改革の実践 オンライン
2026/2/13 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン

関連する出版物

発行年月
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2016/4/28 ドライバ状態の検出、推定技術と自動運転、運転支援システムへの応用
2014/5/10 生体信号処理技術(脳波) 技術開発実態分析調査報告書(CD-ROM版)
2014/5/10 生体信号処理技術(脳波) 技術開発実態分析調査報告書
2013/6/21 機械学習によるパターン識別と画像認識への応用
2011/9/2 '12 HDD・関連市場の将来展望
2010/6/3 実戦 ディジタル信号処理
2006/4/14 詳解 高周波通信用フィルタ設計手法