技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

フレームワークによる機械学習及びディープラーニングの基礎と実践

フレームワークによる機械学習及びディープラーニングの基礎と実践

東京都 開催 会場 開催

開催日

  • 2017年12月11日(月) 10時30分16時30分

プログラム

 午前は、機械学習、ディープラーニングの概要を学習し、午後は、ディープラーニングの環境作成方法、データの前処理方法、Chainerを利用したサンプルプログラムを動かしながら、実際のデータをどう扱うかを学習していきます。
 サンプルは下記を用意します。

  • 画像分類
  • 音による異常検知 (正常時の音からモデルを作成し、音の変化で異常発生を検知します)
  • 強化学習の基礎から簡単なサンプルまで演習できます。

 特に強化学習の講義は、まだ数が少ないため貴重です。

  1. 機械学習とディープラーニング
    1. 機械学習の基本
      • データがモデルをつくる
    2. 学習の種類
      • 教師あり学習の基本
      • 教師なし学習の基本
      • 強化学習の基本
    3. ディープラーニング
      • 概要
  2. 事象を数値へ変換する
    1. 画像を数値情報へ変換する
    2. 言語を数値情報へ変換する
    3. 音を数値情報へ変換する
    4. 状態を数値情報へ変換する
  3. 機械学習/ディープラーニングを行う際に必要なデータ処理の基本
    1. データ前処理の方法
  4. ディープラーニングの基礎と実践
    1. ディープラーニングの種類
      • 畳み込みニューラルネットワーク:CNN (Convolutional Neural Network)
      • 再帰型ニューラルネットワーク:RNN (Recurrent Neural Network)
      • 強化学習 (Deep Q – learning)
    2. Windowsでディープラーニング環境をオープンソースのフレームワークにて構築
      • Chainer
    3. 画像分類
      • Chainerで動かし結果を得る
    4. 音による異常検知 (AutoEncoder使用)
      • Chainerでサンプルプログラムを動かします
    5. 強化学習
      • Chainerでサンプルプログラムを動かします
    6. 過学習の判断
    7. その他、実践にあたり注意すべきこと
  5. このセミナーだけで終わらせないために
    1. twitter/ブログを通じた情報の収集
    2. より高速な環境を求める場合

講師

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 50,760円 (税込)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/19 マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 オンライン
2026/1/19 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/20 EMCの基礎と機械学習・深層学習の応用技術 オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (2日間) オンライン
2026/1/22 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (基礎編) オンライン
2026/1/26 機械学習と脳科学におけるベイズ統計 オンライン
2026/1/26 外観検査 (2日間) オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/26 Pythonを用いた実験計画法とその最適化 オンライン
2026/1/27 AIの選択・精度・効率・構造・コストなどの最適化原理 オンライン
2026/1/27 時系列データ分析 入門 : 基礎とExcelでの実行方法 オンライン
2026/1/28 ディジタルフィルタを理解する オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/29 生成AI・機械学習を活用した特許 (技術) 調査・分析と技術マーケティングへの応用 (実践テクニック・応用編) オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/12 生成AI・AIエージェントを活用した知財業務改革の実践 オンライン