技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

先端半導体パッケージング・実装技術の研究開発動向

ECTC2025での発表を解説

先端半導体パッケージング・実装技術の研究開発動向

~最新の技術発表を、その特長・開発背景等を含めて解説 / ハイブリッド接合・ガラスパッケージ・Co-Packaged Optics・チップレット異種集積等~
オンライン 開催

概要

今回のセミナーでは、半導体パッケージングの最新動向を紹介し、2025年5月に終えたECTC2025の中からハイブリッド接合、ガラス基板・ガラスパッケージ、Co-Packaged Optics (CPO) 、異種チップレット集積の関連技術などを中心にハイライトを行います。ECTC2025の総発表件数419件 (ポスター167件含む) から95件の注目発表をピックアップして解説する予定です。

開催日

  • 2025年9月12日(金) 13時00分16時30分

受講対象者

  • 半導体後工程 (半導体パッケージング、半導体実装技術) に関する最新の研究発表の内容を知りたい方
  • 今年オンサイトで行われたECTC2025に参加できなかった方
  • 2025年10月にECTC2026に投稿し2026年2月にfull paperを書く予定の方

プログラム

 昨今、特に話題を集める半導体パッケージングですが、これに関連した数ある国際会議の中でも最も大きく最新の技術が発表されるのがECTC (Electronic Components and Technology Conference) です。
 今回のセミナーでは、半導体パッケージングの最新動向を紹介し、2025年5月に終えたECTC2025の中からハイブリッド接合、ガラス基板・ガラスパッケージ、Co-Packaged Optics (CPO) 、異種チップレット集積の関連技術などを中心にハイライトを行います。ECTC2025の総発表件数419件 (ポスター167件含む) から95件の注目発表をピックアップして解説する予定です。

  1. ECTCの紹介と最近の研究動向、および用語の説明
    1. ECTCの発表件数の推移や国別/研究機関別投稿状況
    2. チップレット集積と先端パッケージング技術の動向
    3. ハイブリッド接合の概要
  2. ハイブリッド接合 54件
    • Session 1: Processing and Packaging Articles for 3D Integration
      • Paper 4. A Novel 3D Heterogeneous Integration Using 2 μm Bond Pitch Die-to-Wafer Hybrid Cu Bonding and Wafer Reconstruction Process (Samsung Electronics)
      • Paper 5. Enabling Chip-to-Wafer Hybrid Bonding Scaling to 1 μm Pitch With Optimal Power Delivery Using New Bond Via Architectures (Intel)
      • Paper 7. Integration Solution for Thin D2W Hybrid Bonding for Yield and Reliability (Applied Materials)
    • Session 3: Hybrid Bonding Materials and Processing for Advanced Packaging
      • Paper 1. Morphological Microstructure Characterization and Optimization of Nanocrystalline Copper Deposition for Fine-Pitch Hybrid Bonding Cu/SiO2 at Low Temperature
        (STMicroelectronics/CEA-Leti)
      • Paper 2. Wafer-to-Wafer Bonding With Ultralow Thermal Resistance and High Bonding Energy (Intel)
      • Paper 3. Novel Polymer for Hybrid Bonding With Precise Tunable Crosslink Density (Resonac)
      • Paper 4. Hybrid Bonding With Particle Accommodation Using Polymer Dielectric: Design, Process and Yield Study (IME/Toray)
      • Paper 5. Characterization of Self-Nanoparticulated Cu-Cu Interconnection for Low-temperature Hybrid Bonding (Tohoku University/ Daicel)
      • Paper 7. Effect of Grain Size on Cu-Cu Bonding Quality for Fine-Pitch Hybrid Bonding Application
        (National Yang Ming Chiao Tung University)
    • Session 8: Novel Structures and Processes for Chip-toWafer Hybrid Bonding
      • Paper 1. 2 μm Pitch Direct Die-to-Wafer Hybrid Bonding Using Surface Protection During Wafer Thinning and Die Singulation (imec)
      • Paper 2. Innovative Cool-Stacking Technology for High Performance and Energy-Efficiency SoIC® (TSMC)
      • Paper 3. Influences of Chip Shape on Scaling in Chip-on-Wafer Hybrid Bonding (Sony)
      • Paper 4. Warpage Engineering in C2W Hybrid Bonding Using Inter-Die Gap Fill Dielectrics for 2.5D/3D Integration (IME)
      • Paper 5. Direct Transfer Bonding Technology Enabling 50-nm Scale Accuracy for Die-to-Wafer
  3. D/Heterogeneous Integration (Tazmo/LINTEC/ULVAC/Tohoku University/Science of Tokyo)
    • Paper 6. Hierarchical Multi-layer and Stacking Vias With Novel Structure by Transferable Cu/Polymer Hybrid Bonding for High Speed Digital Applications (ITRI/Brewer Science)
    • Paper 7. Scalable Chip-to-Wafer Hybrid Bonding Processes for Fine-pitch (3 μm and 6 μm) Interconnections (IME/Applied Materials)
    • Session 9: Co-Packaged Optics and Hybrid Bonding Innovations for HI
      • Paper 4. Self-Formed Barrier Using Cu-Mn Alloy Seed Applied to a 400nm Pitch Wafer-to-Wafer Hybrid Bonding Technology (imec)
      • Paper 5. SiCN CMP Integration for Hybrid Bonding Application (Applied Materials)
      • Paper 6. Inter-Die Hybrid Cu/Diamond Microbump Bonding for 3D Heterogeneous Integration
        (Purdue University/University of Aveiro)
      • Paper 7. First Demonstration of Superior Characteristics of Co-Co Bonding With Passivation Structure at Low Thermal Budget for Advanced Packaging and UltraFine Pitch Applications
        (National Yang Ming Chiao Tung University)
    • Session 14: New Materials and Processes in Wafer-to-Wafer Hybrid Bonding
      • Paper 1. Integration, Materials and Equipment Innovations to Enable 100 nm Pitch W2W Bonding for Memory-to-Logic and Logic-to-Logic 3D Stacking (Applied Materials/EVG)
      • Paper 2. Advanced Memory Wafer-to-Wafer Bonding With Support of Recyclable Carrier Systems
        (Micron)
      • Paper 3. Development of Wafer-Level Wet Atomic Layer Etching Process Platform for Cu Surface Topography Control in Hybrid Bonding Applications (Samsung Electronics)
      • Paper 4. Development of a Novel WoWoW Process for 1/1.3-inch 50 Megapixel Three-Wafer-Stacked CMOS Image Sensor With DNN Circuits (Sony)
      • Paper 5. Wafer-to-Wafer Hybrid Bonding Technology With 300nm Interconnect Pitch (imec)
      • Paper 6. Electrical Performance of Hybrid Bonding With Sub-Micron Cu-Cu Bonding Contacts: Effects of Scaling, Microstructure, and Surface Morphology (Binghamton University/IBM)
      • Paper 7. Selective Ru Deposition on Cu Bond Pads to Enable Low Thermal Budget Hybrid Bonding for HBM Applications. (IME)
    • Session 16: Manufacturing and Thermal Management Reliability
      • Paper 7. Enhanced Electromigration Reliability of Cu/SiO2 Hybrid Joints Fabricated by (111)-Oriented Nanotwinned Cu (National Yang Ming Chiao Tung University/ITRI)
    • Session 19: Chiplet Integration and Advanced Thermal Solutions
      • Paper 3. Mid-BEOL Heterogeneous Integration Through Sub-1 μm Pitch Hybrid Bonding & Advanced Silicon Carrier Technologies for AI & Compute Applications (Intel)
    • Session 21: Meeting AI Challenges: Large Package Solution and Warpage Management for Advanced Packaging
      • Paper 7. Innovative Silicon Die Thinning and Edge Protection of Chip-to-Wafer Hybrid Bonded Wafer for High-Density Multi-Chip Stacking (IME/Entegris)
    • Session 22: Heterogeneous Integration Using Bridge and 3D Stacking
      • Paper 1. Hybrid Bonding With Fluidic Self Alignment: Process Optimization and Electrical Test Vehicle Fabrication (Intel)
      • Paper 3. Assessing Queue Time in D2W Hybrid Bonding Through Precise Bond Strength Measurements
        (Yokohama National University/Toray Engineering/DISCO/Tohoku University/University of Tsukuba)
    • Session 32: Design, Materials, Metrology & Standards for Next Generation Interconnections
      • Paper 2. Are Voids Restricted to Cu-Cu bonding Interface? Truth Revealed by CEY Scanning Transmission X-ray Microscopy (Tohoku University/KEK)
      • Paper 3. Ultra-Fast Cu/Polymer Hybrid Bonding With Electroless Passivation Layer for Cost-Effective High I/O Interconnection Stacking (National Yang Ming Chiao Tung University/TOK)
      • Paper 6. A Study About Bonding Properties With Multilayer Porous Structures for Fine Pitch Interconnection (Mitsubishi Materials)
    • Session 36: Modeling Driven Packaging and Process Advancements
      • Paper 6. Simulation of Mechanical Cu Pad Expansion Mechanism and Measures to Increase Expansion
        (Sony)
    • Session 37: Interactive Presentations 1
      • Paper 21. Thermal Characterization of HBMs Integrated via Hybrid Bonding (IME)
      • Paper 24. Digital Design of Inter-Die Gap Fill Dielectric Film Processing for C2W Hybrid Bonding Using Finite Element Modelling (IME)
      • Paper 25. Mitigation of Wafer-to-Wafer Bonding Distortions Through Accelerated Simulations and Measurements (imec)
    • Session 39: Interactive Presentations 3
      • Paper 4. The Role of Surface Preparation and Bonding Parameters in Improving Hybrid Bonding Quality
        (Seoul National University of Science and Technology)
      • Paper 6. Electrical Performance of 2-Platen CMP Process for Hybrid Bonding Application With Conventional / nt-Cu and Low Temperature of SixNy/SixOy Dielectrics
        (Intel/Applied Materials)
      • Paper 10. Wet-Chemical Cu Cleaning for Fine-Pitch Hybrid Bonding
        (Yokohama National University/imec/Kurita Water Industries)
      • Paper 13. A Mild Surface Activation Under Redox Gases Using Vacuum Ultraviolet Irradiation for Interconnection of Semiconductor Packaging (Ushio)
      • Paper 15. A High Throughput Low-Temperature Copper-Copper Thermal Compression Bonding Scheme Using Tin Passivation (UCLA)
      • Paper 16. Advanced Face-To-Back CoW 2.0 μm Pitch Cu-Cu Hybrid Bonding Process for Three Layer-Stacked 3D Heterogeneous Integration. (Sony)
      • Paper 17. Process Approaches to Enable 200°C Hybrid Bonding With SiCN Bond Layer and 0.5 μm Pitch
        (Applied Materials/ EVG)
      • Paper 18. High-Quality Cu μ-Joints by High-Throughput Contactless Hot-Isostatic-Pressure (HIP) Annealing for Chip-to-Wafer and Wafer-to-Wafer Hybrid Bonding
        (Tohoku University/Kobe Steel)
      • Paper 22. Effect of Dimension on Thermal Expansion of Cu Pads in SiO2 Vias for 3D IC Fine-Pitch Hybrid Bonding (National Yang Ming Chiao Tung University)
      • Paper 25. Process Development, Challenges, and Strategies for Void-Free Multi-Chip Stacking in Hybrid Bonding Application (IME)
      • Paper 26. Ozone-Ethylene Radical Activation of SiCN/Cu Without Water Rinsing for Hybrid Bonding
        (Tohoku University/Meiden Nanoprocess Innovations)
    • Session 40: Interactive Presentations
      • Paper 10. Wafer-to-Wafer Bonding With Saddle-Shaped Wafers (imec/EVG)
      • Paper 13. Bond Wave Analysis of SiCN for Fine Pitch Hybrid Bonding
        (Yokohama National University/Tokyo Electron/SK Hynix)
      • Paper 14. Characterization of Interfacial Fracture Strength in Hybrid Bonded Wafers: A Novel Approach for High-Resolution Spatial Profiling (IBM/UCLA)
    • Session 41: Student Interactive Presentations
      • Paper 31. Reliable Bonding Strength Measurement of SiCN/SiCN Films by Four-point Bending Methodology (National Yang Ming Chiao Tung University/National Tsing Hua University)
  4. ガラス関連技術 22件
    • Session 4: Large Package Manufacturing and Panel Level Processing
      • Paper 6. Glass-Core Advanced Packaging Substrate Post-Dicing Die Strengths Comprehensive Comparisons for Different Singulation Methods-Dicing Induced SeWaRe Failures Re-Visited Ten Years Later (DISCO USA)
      • Paper 7. Fundamental Transmission Performance Evaluation of Sub-2 Micron Fine-Wiring on Glass Core Substrate (DNP)
    • Session 11: Emerging Trends: Towards High Speed, Secure, Reliable, and Sustainable Packaging
      • Paper 2. Embedded Silicon Chip Capacitors in Glass Package for Vertical Power Delivery (CHIMES, SRC/Georgia Institute of Technology/Pennsylvania State University)
    • Session 20: Novel Technologies for High Density RDL Interposers
      • Paper 2. Panel Level Interposer by Using Glass Carrier for 2.5D Advance IC Package Application
        (ITRI/Applied Materials/FAVITE)
    • Session 22: Heterogeneous Integration Using Bridge and 3D Stacking
      • Paper 6. A Novel Thermal Isolation Method With Embedded ‘Glass Bridge’ Structures in Silicon-Based 3D Heterogeneous Integration Systems (Purdue University)
    • Session 24: Advanced Characterization and Modeling of Next Generation Packaging Materials
      • Paper 6. Physics-Based Modeling With Nanoindentation on the Mechanical Reliability of TGV Substrates Under Annealing Effects (ITRI/National Tsing Hua University/Applied Materials)
    • Session 25: Advanced Substrate Technologies-Organic, Embedding and Glass
      • Paper 1. Development of Glass Core Substrates for Long-Term Reliability Under Thermal Stress (DNP)
      • Paper 5. Glass Core Substrate versus Organic Core Substrate (Unimicron)
      • Paper 6. Development of Glass Core Build-Up Substate With TGV (Shinko)
      • Paper 7. High-Aspect-Ratio, 6 μm-Diameter Through-Glass-Via Fabrication Into 100 μm-Thick ENA1 by Dry Laser Micro-Drilling Process (University of Tokyo/AGC)
    • Session 26: Process Innovation in Through-Via and Solder Interconnection
      • Paper 1. Deep Via and Trench Etching of Low CTE Glass Package Substrate Using SF6, NF3 and H2O Based NLD Plasma Process (ULVAC/Northeastern University)
      • Paper 2. Development of Straight, Small-Diameter, High-Aspect Ratio Copper-Filled Through-Glass Vias (TGV) for High-Density 3D Interconnections (Purdue University/Taiwan Foresight)
      • Paper 3. Metallization of Helium Tight and Thermo-Mechanically Reliable Through Glass Vias (TGV) by Conformal Pinched Via (CPV) Approach (Corning)
    • Session 29: Advances in Additive Manufacturing, Wearable and Medical Technologies
      • Paper 3. Direct Digital Manufacturing for Laser-Drilled Vias in Multilayer Glass Additively Manufactured Electronics (nScrypt/Sciperio)
    • Session 33: Innovative Interconnects and Through Via Technology for 3D Packaging
      • Paper 6. Dry Film Photo-Imageable Dielectric Enabling Glass Core Substrate TGV Filling and Build-Up
        (DuPont)
    • Session 35: High-Performance Antenna and RF Design
      • Paper 1. 3D Vertical Glass Stacking for 6G Communications-Interconnect Fabrication and Broadband Characterization (Georgia Institute of Technology/Pennsylvania State University)
    • Session 36: Modeling Driven Packaging and Process Advancements
      • Paper 2. Multi-Layer Sequential Fabrication and Mechanics-Based Model of Glass-Core Packages With Embedded Dies (Georgia Institute of Technology)
    • Session 39: Interactive Presentations 3
      • Paper 3. Fabrication of D-band (140 GHz) Broadband Antenna Using Quartz Glass on Silicon Hybrid Bonded Wafer With Cavity (NGK/Fraunhofer IZM/Brandenburg University of Technology)
    • Session 40: Interactive Presentations 4
      • Paper 21. Electrolytic Copper Plating Process for Glass Substrates (Uyemura)
    • Session 41: Student Interactive Presentations
      • Paper 4. 3D Coupled Line Inductors With Through-Glass Vias for Compact Passive Circuit Integration in Glass Packages (Gachon University/Korea Electronics Technology Institute)
      • Paper 14. Organic and Hybrid Nanoscale Films for Low Loss Direct Glass-Copper Metallization
        (Georgia Institute of Technology)
      • Paper 17. Chiplet Embedding in Glass-Core Package RDL (Georgia Institute of Technology)
  5. CPO関連技術 14件
    • Session 2: Co-Packaged Optics
      • Paper 1. Heterogeneous Integration of Fiber-Based Co-Packaged Optics With EMIB Technology: Assembly, Performance, and Reliability (Intel)
      • Paper 2. 6.4Tbps, 224Gbps/Lane Co-Packaged Optical Engines With Fine Pitch Through-Package Interconnects: Powering AI/ML and Next-Gen Data Centers (IME/Rain Tree Photonics)
      • Paper 3. Flip-Chip Photonic-Electronic Integration Platform for Co-Packaged Optics Using a Glass Substrate With Vertically-Coupled Beam Expanding Lens (Sumitomo Electric Industries)
      • Paper 4. Optical and Electrical Characterization of a Compact Universal Photonic Engine (TSMC)
      • Paper 5. Large-Scale Glass Waveguide Circuit for Board-Level Optical Interconnects Between Faceplate and Co-Packaged Optical Transceivers (Corning/Fraunhofer IZM)
      • Paper 6. All-SMF Arrays for Co-Packaged Optics: Optimizing Cost, Complexity, and Performance
        (NVIDIA)
    • Session 7: High Performance Computing and Design Challenges and Solutions
      • Paper 6. PM-Co-Packaged Optics (CPO) Technology Full Module Test Vehicle Demonstrations
        (IBM/IBM Tokyo)
    • Session 9: Co-Packaged Optics and Hybrid Bonding Innovations for HI
      • Paper 1. Demonstration of Co-Packaged Optics Assembly for Fiber-Based Optical Interconnect (Intel)
      • Paper 2. Optical Multi-Chip Interconnect Bridge (OMIBTM) Interposer Assembly Process to Enable High-Density Photonic Interconnects for High-Performance Computing Applications (Celestial AI)
      • Paper 3. Advanced Glass Substrate Fabrication and Metallization Process Technology for Co-Packaged Optics (Corning)
    • Session 15: Photonics Integration and Subsystems
      • Paper 6. Stress, Thermal and Optical Performance (STOP) Analysis of Co-Packaged Optical Processor With FPGA-Memory-Optics-Power Integration (LightSpeed Photonics/IME)
    • Session 32: Design, Materials, Metrology & Standards for Next Generation Interconnections
      • Paper 5. Study of High-Density Optical Redistribution Layer Enabling Advanced Chiplet Edge Bandwidth Density on Active Optical Package Substrate (AIST)
    • Session 38: Interactive Presentations 2
      • Paper 26. Novel Optical Chiplet Structure Based on MCeP® (Shinko)
      • Paper 27. Enabling Heterogeneous Integration of Optoelectronic Circuits via Die-to-Die Low-Temperature Bonding With Ultrathin dielectrics. (IME)
  6. その他の注目論文 5件
    • Session 1: Heterogeneous Chiplet Integration
      • Paper 1. SoW-X: A Novel System-on-Wafer Technology for Next Generation AI Server Application (TSMC)
    • Session 7: High Performance Computing and Design Challenges and Solutions
      • Paper 2. Development of Embedded Multi Si Bridge Package in Panel Level Process for HPC/AI Applications (Samsung Electronics)
    • Session 22: Heterogeneous Integration Using Bridge and 3D Stacking
      • Paper 7. FOCoS-Bridge for Emerging Trends in High-Performance Computing (HPC) and Artificial Intelligence (AI) (ASE)
    • Session 40: Interactive Presentations 4
      • Paper 19. Fabrication of Panel-Level Redistribution Interposer with 1.5/1.5 μm Multilayer Fine Wiring and Solutions to Issues of Miniaturization (Resonac)
    • Session 32: Design, Materials, Metrology & Standards for Next Generation Interconnections
      • Paper 7. Massive Orthogonal Stacking Assembly of IC (MOSAIC) Cube With Inductive Coupling for Exascale Memory Applications
        (University of Tokyo/Tohoku University/EBARA/Yamaha Robotics Holdings)

講師

  • 福島 誉史
    東北大学 大学院 工学研究科 機械機能創成専攻
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 34,400円 (税別) / 37,840円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込)

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 22,500円(税別) / 24,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 34,400円(税別) / 37,840円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 請求書は、代表者にご送付いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。
  • サイエンス&テクノロジー社の「2名同時申込みで1名分無料」価格を適用しています。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 Zoomのシステム要件テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/7/23 半導体パッケージの基礎知識、技術動向と課題 オンライン
2025/7/23 水の動きで読み解く半導体洗浄のポイント オンライン
2025/7/24 半導体製造における後工程・実装・設計の基礎・入門講座 オンライン
2025/7/24 水の動きで読み解く半導体洗浄のポイント オンライン
2025/7/24 先端半導体デバイスにおける多層配線技術と2.5D/3Dデバイス集積化技術 オンライン
2025/7/24 次世代パワー半導体とパワーデバイスの結晶欠陥の特定、評価技術とその動向、課題 オンライン
2025/7/28 半導体を取り巻く輸出管理規制の最新動向 オンライン
2025/7/29 半導体産業の今後の見通し、日本のあるべき姿 オンライン
2025/7/30 ガラス基板の開発動向と製造プロセス、加工技術 オンライン
2025/7/30 半導体デバイス製造に用いられる接合技術 オンライン
2025/7/30 半導体製造装置の基礎・トレンドと今後の展望 (2025年夏版) オンライン
2025/7/31 プラズマプロセスにおける基礎と半導体微細加工へのプラズマによるエッチングプロセス オンライン
2025/7/31 半導体デバイス製造に用いられる接合技術 オンライン
2025/7/31 多結晶半導体薄膜の基礎と応用技術 オンライン
2025/8/5 半導体の発熱と伝熱経路の把握、熱設計 オンライン
2025/8/7 半導体パッケージの基礎知識、技術動向と課題 オンライン
2025/8/7 感光性レジストの基礎、材料設計と環境に優しい剥離技術 オンライン
2025/8/7 半導体材料のウェットエッチング加工の基礎と動向 オンライン
2025/8/8 半導体製造における後工程・実装・設計の基礎・入門講座 オンライン
2025/8/8 パワーモジュールパッケージの高耐熱化・低熱抵抗化の技術動向 大阪府 会場