技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

ベイズ統計から学ぶ統計的機械学習

ベイズ統計から学ぶ統計的機械学習

~グラフィカルモデルとデータサイエンスへの応用~
オンライン 開催

開催日

  • 2023年6月1日(木) 11時00分 17時00分

プログラム

 本講義では、確率的グラフィカルモデルと呼ばれる統計的機械学習モデルをテーマとして扱います。確率的グラフィカルモデルの利点は、なんと言っても、これ一つで多くのデータサイエンス (データマイニングや人工知能) ができるようになるという点です。これは、昨今の人工知能ブームにより盛り上がっているニューラルネットワークモデルとはその意味で一線を画すものです。データマイニングと人工知能を同時にこなすことのできる確率的グラフィカルモデルは、現在の人工知能の弱点 (例えば、作成した人工知能の意味解釈が人間では困難である、など) を補填する可能性を大いに秘めた技術であり、将来の人工知能の核にもなり得る技術と期待しています。ただ残念なことに、学術業界以外では、確率的グラフィカルモデルに対する認知はまだほとんど広がっていません。
 本講義では、初学者にも分かりやすいよう、統計的機械学習理論を学ぶ上で重要となるトピックは網羅的に解説し、理論の基礎から全体像、そして、応用に対する考え方に至るまでを習得できるようにします。また、初学者だけに限らず、統計的機械学習理論を多少聞きかじったけれども、しっかりと基礎部分を把握しておきたいという方にもピッタリな内容となっています。内容の性質上、数式が多数出現しますが、必要に応じて補足をしていくので特殊な専門知識は必要ありません。

  1. はじめに
    1. データマイニングと人工知能
    2. 機械学習とは何か?
      1. 教師あり学習
      2. 教師なし学習
    3. 深層学習概説
    4. データマイニングと人工知能の違い
    5. 統計的機械学習の目的とメリット
    6. 確率の基礎と例題
      1. 規格化条件
      2. 平均・分散
      3. 和法則・積法則
      4. 例題で理解しよう
  2. 統計的機械学習の基礎とマルコフ確率場
    1. ベイズ推定
    2. 統計的機械学習の枠組み
    3. マルコフ確率場
      1. 確率的グラフィカルモデル
      2. ギブスサンプリング
      3. ボルツマンマシン
    4. マルコフ確率場の統計的機械学習
      1. 最尤法
      2. 最尤法と情報理論
      3. EMアルゴリズム
    5. マルコフ確率場の問題点
      1. 計算量爆発の問題
      2. 近似的アプローチ
    6. ガウス型マルコフ確率場
  3. マルコフ確率場の応用例
    1. 重回帰分析問題
    2. 画像ノイズ除去問題
    3. 道路交通量の推定問題
    4. グラフマイニング問題
      1. スパースモデリングのアプローチ
      2. 項目間の関連マップの抽出
  4. 人工知能への応用
    1. パターン認識問題とは?
    2. 問題のベイズ的定式化と逆問題
      1. 事後分布による逆推定
      2. AIシステムが何を見ているか?
    3. ベイジアン・ディープラーニング
  5. おわりに
    1. 本講座のまとめ
    2. 統計的機械学習の利点とこれから

講師

  • 安田 宗樹
    山形大学 大学院 理工学研究科 情報・エレクトロニクス専攻
    教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 47,000円 (税別) / 51,700円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/6/24 小規模データに対する機械学習の効果的適用法 オンライン
2024/6/24 外観検査の自動化の進め方と画像データ取得およびAIによる検査のポイント オンライン
2024/6/24 計測インフォマティクスの基礎とスペクトルデータ解析への応用 オンライン
2024/6/26 深層学習と適応フィルタ オンライン
2024/6/26 少ないデータに対する機械学習の適用と学習結果の評価技術 オンライン
2024/7/5 小規模データに対する機械学習の効果的適用法 オンライン
2024/7/8 機械学習 (ディープラーニング) の基礎・活用・実践 (全3回) オンライン
2024/7/8 ディープラーニングと機械学習プロジェクトの進め方 オンライン
2024/7/8 生成AI、LLM (大規模言語モデル) の選び方と使い方 オンライン
2024/7/8 人工知能の医療検査への応用事例と関連法規制 オンライン
2024/7/9 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン
2024/7/10 外観検査のデジタル化・自動化 オンライン
2024/7/10 異常検知、学習データ作成への生成AI活用 オンライン
2024/7/11 Excelデータ分析へ向けたデータ前処理のコツ オンライン
2024/7/12 人工知能の医療検査への応用事例と関連法規制 オンライン
2024/7/18 Vision Transformerの仕組み オンライン
2024/7/22 画像認識技術入門 オンライン
2024/7/22 ベイズモデリングの入門 & 実践講座 オンライン
2024/7/23 カルマンフィルタの実践 オンライン
2024/7/24 ベイズ統計学の基礎と演習 オンライン

関連する出版物

発行年月
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書 (CD-ROM版)
2024/3/4 対話型生成AI (人工知能) 利活用技術 技術開発実態分析調査報告書
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2010/2/22 画像理解・パターン認識の基礎と応用
1993/3/1 新しいサーボ制御の基礎と実用化技術