技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
アーカイブ受講の場合は、2022年8月16日前後から配信予定 (視聴期間:配信開始後10日間)
本セミナーでは、自動車を中心に住宅、医療、電器、電子機器分野における熱可塑性エラストマー (TPE:Thermoplastic Elastomers) の応用展開と技術トレンドを解説いたします。
また、日本に留まらず世界各国の市場や技術動向、規制等の関連情報も提供いたします。
常温では加硫ゴムの特性を示すが、高温では塑性変形が容易となる熱可塑性エラストマーは、自動車を中心に電気・電子部品、土木建築、医療、日用雑貨等など、様々な産業分野で利用されている。自動車分野では化石由来燃料を用いた内燃機関駆動から蓄電池 (BE:Battery Electric) や燃料電池 (FC:Fuel Cell) によるモーター駆動に変化しつつあり (産業構造も大きく変化) 、安全のため自動運転、タッチパネルによる運転操作、カーシェアリング (個人所有から共同所有、MaaS:Mobility as a Serviceとも表現) 、中国及び開発途上国におけるOEM (Original Equipment Manufacture→自動車産業の場合は完成車メーカーを指す) の勃興が同時進行している。
燃料だけではなく熱可塑性エラストマーを含めたプラスチックにも脱化石由来を求められている (カーボンニュートラル) 。COVID – 19のパンデミックにより各市場で抗菌・抗ウイルス仕様の要求が増加している。人工知能 (AI:Artificial Intelligence) を搭載したロボットの開発が進み、ロボットの皮膚 (肌) に適した熱可塑性エラストマーの研究も盛んである。数十年単位の従来のパラダイムシフトの観念を捨てないと急激な変化には対応出来ない。
熱可塑性エラストマーの出発は塩化ビニル樹脂に可塑剤を混ぜた軟質塩ビである。可塑剤にはアレルギー物質として懸念されているオルトフタル酸エステル (Ortho Phtalate) が主に用いられてきたが、他の可塑剤に代替えが進んでいる。また軟質塩ビは低温で硬くなり割れやすいため、エアバッグの安定した開裂性が要求される自動車用のインストルメントパネルやドアトリムには適さない。低温でもフレキシブルなポリオレフィン系熱可塑性エラストマーに代わっている。また耐摩耗性や低温屈曲性が要求される自動車用シート表皮は強靱で軽量なウレタン系エラストマー (合成皮革) に代りつつある。自動車内装材も燃費向上に寄与するため軽量化が重要な観点となっている。従来高級車は本革が主流だったが、米国のPETA (People for the Ethical Treatment of Animals:動物の倫理的な扱いを推進する団体) や、イギリスやインドのVegan (完全菜食主義者) によるアニマルフリーの要求が強くなり、テスラーモータースも本革からウレタン系エラストマーレザー (合成皮革) に代えている。しかしウレタン系エラストマーは耐薬品性 (特にエタノール) に劣っている。ウレタン系エラストマーに代わる耐薬品性の高いエラストマーとしてシリコーン系、ポリエステル (TPC) 系等が登場している。インストルメントパネルは、操作のタッチパネル化により複雑な構造の必要性がなくなり大きく変化している。
本講座では現状を世界的に認識して、熱可塑性エラストマー (非熱可塑性エラストマーも含むエラストマー全般) の未来を解説する。
教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。
| 開始日時 | 会場 | 開催方法 | |
|---|---|---|---|
| 2026/1/15 | 分子シミュレーションによる高分子材料の内部構造と変形・破壊の解析 | オンライン | |
| 2026/1/15 | 二軸混練押出機の混練技術・スクリュ設計・トラブル対策 | オンライン | |
| 2026/1/16 | 高分子・ポリマー材料の合成、重合反応の基礎、プロセスと工業化・実用化のための総合知識 | オンライン | |
| 2026/1/16 | 高分子微粒子の合成、粒径制御とその中空化 | オンライン | |
| 2026/1/16 | 分子シミュレーションによる高分子材料の内部構造と変形・破壊の解析 | オンライン | |
| 2026/1/19 | 化学反応型樹脂の接着強さと硬化率評価 | オンライン | |
| 2026/1/20 | UV硬化樹脂の材料設計と硬度・柔軟性の両立、低粘度化 | オンライン | |
| 2026/1/20 | 高分子延伸による配向・結晶化制御 | 東京都 | 会場 |
| 2026/1/21 | CO2を原料とした樹脂材料の研究開発動向と工業化の可能性 | オンライン | |
| 2026/1/23 | ウレタン材料の基礎と組成・構造解析および難溶解材料の最適な分析手法 | オンライン | |
| 2026/1/23 | 易解体性材料の基礎と最新トレンドおよび接着剤・粘着剤の開発事例とポイント | オンライン | |
| 2026/1/26 | 溶解度パラメータ (SP値・HSP値) の基礎と活用法 | オンライン | |
| 2026/1/27 | 高分子微粒子の合成、粒径制御とその中空化 | オンライン | |
| 2026/1/27 | ビトリマー (結合交換性架橋樹脂) の基礎とイオン伝導性ビトリマーへの展開 | オンライン | |
| 2026/1/28 | ポリウレタンの材料設計と構造・物性の制御と劣化対策 | オンライン | |
| 2026/1/30 | 熱可塑性エラストマーの総合知識 | オンライン | |
| 2026/1/30 | 最新のCFRP成形加工法と製品への適用事例 | オンライン | |
| 2026/1/30 | 高屈折率ポリマーの分子設計、合成手法と屈折率の測定方法 | オンライン | |
| 2026/2/2 | 最新のCFRP成形加工法と製品への適用事例 | オンライン | |
| 2026/2/3 | 防振ゴムの劣化メカニズムと耐久性試験・寿命予測 | オンライン |
| 発行年月 | |
|---|---|
| 2024/11/20 | 押出機混練 |
| 2024/7/31 | ポリウレタンの材料設計、環境負荷低減と応用事例 |
| 2024/7/29 | サステナブルなプラスチックの技術と展望 |
| 2024/7/22 | 世界のレトルトフィルム・レトルトパウチの実態と将来展望 2024-2026 |
| 2024/7/22 | 世界のレトルトフィルム・レトルトパウチの実態と将来展望 2024-2026 (書籍版 + CD版) |
| 2024/7/17 | 世界のリサイクルPET 最新業界レポート |
| 2024/6/28 | ハイドロゲルの特性と作製および医療材料への応用 |
| 2024/5/30 | PETボトルの最新リサイクル技術動向 |
| 2024/2/29 | プラスチックのリサイクルと再生材の改質技術 |
| 2023/10/31 | エポキシ樹脂の配合設計と高機能化 |
| 2023/7/31 | 熱可塑性エラストマーの特性と選定技術 |
| 2023/7/14 | リサイクル材・バイオマス複合プラスチックの技術と仕組 |
| 2023/3/31 | バイオマス材料の開発と応用 |
| 2023/1/31 | 液晶ポリマー (LCP) の物性と成形技術および高性能化 |
| 2023/1/6 | バイオプラスチックの高機能化 |
| 2022/10/5 | 世界のプラスチックリサイクル 最新業界レポート |
| 2022/8/31 | ポリイミドの高機能設計と応用技術 |
| 2022/5/31 | 樹脂/フィラー複合材料の界面制御と評価 |
| 2022/5/31 | 自動車マルチマテリアルに向けた樹脂複合材料の開発 |
| 2022/5/30 | 世界のバイオプラスチック・微生物ポリマー 最新業界レポート |