技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

機械学習モデルへの解釈性付与手法と応用・今後の動向

機械学習モデルへの解釈性付与手法と応用・今後の動向

~解釈性によって何ができるようになるのか / 社会のニーズから、具体的手法・活用技術、今後の展開まで~
東京都 開催 会場 開催

概要

本セミナーでは、ブラックボックス的な性質が課題となる機械学習技術について取り上げ、モデルの判断根拠や内部挙動を説明する解釈性付与について、具体的手法から活用技術、機械学習を用いた開発・ビジネスにおいて解釈性が可能にすること、今後求められる技術や方向性などを解説いたします。

開催日

  • 2020年3月24日(火) 13時00分 16時30分

受講対象者

  • 機械学習技術を利用しているエンジニア
  • 業務・ビジネスに機械学習技術を導入しようと考えているエンジニア

修得知識

  • 機械学習モデルに対する解釈性付与について
  • 機械学習モデルに対する解釈性付与が求められる社会的背景
  • 機械学習モデルに解釈性を付与する手法・アプローチ
  • 機械学習モデルと解釈性付与を利用する技術

プログラム

 画像認識での飛躍的な精度向上をはじめとして、Webサービス、医療、自動運転など応用が広がる機械学習技術について、モデルの判断根拠や内部挙動を説明する、解釈性付与の技術を解説します。
 講義ではまず、機械学習モデルの解釈性に関する世の中の議論を整理し、社会に望まれる性質 (Desiderata) について解説します。次に、解釈性を与えるアプローチを紹介し、現在利用可能なライブラリを用いながら、解釈性が、機械学習モデルを使った開発・ビジネスをどのように助けることができるか、また今後どのような技術が求められるかを解説します。

  1. 機械学習モデルの解釈性
    1. 機械学習モデルになぜ解釈性が必要か
  2. 社会的背景
    1. 社会に求められる解釈性とは (Desiderata)
  3. 解釈性付与の手法
    1. モデルに関する仮定 Model-agnosticとModel-specific
    2. モデルに対する解釈性付与
    3. 推論結果に対する解釈性付与
    4. インスタンスベースの手法
  4. 今後の動向
    1. 解釈性付与の手法はDesiderataに対しどのように応えられているか
    • 質疑応答・名刺交換

講師

  • 瀬光 孝之
    三菱電機 株式会社 情報技術総合研究所 知能情報処理技術部

会場

品川区立総合区民会館 きゅりあん

4F 第1グループ活動室

東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 38,000円 (税別) / 41,800円 (税込)
複数名
: 20,000円 (税別) / 22,000円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 20,000円(税別) / 22,000円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 38,000円(税別) / 41,800円(税込)
    • 2名様でお申し込みの場合 : 2名で 40,000円(税別) / 44,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 60,000円(税別) / 66,000円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/3/26 ベイズ推定の基礎およびPythonを用いたデータ解析 オンライン
2025/3/26 マテリアルズインフォマティクス (MI) の最新動向と小規模データ駆動型MIの展開 オンライン
2025/3/28 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/4/2 ベイズ推定の基礎およびPythonを用いたデータ解析 オンライン
2025/4/4 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/4/8 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/9 マテリアルズインフォマティクス (MI) の最新動向と小規模データ駆動型MIの展開 オンライン
2025/4/10 Vision Transformerの仕組みとBEV Perception オンライン
2025/4/11 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/4/11 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/15 自動運転・運転支援に向けた各種センサーを用いた周辺環境認識技術 オンライン
2025/4/16 異常検知・学習データ作成のための生成AI活用 オンライン
2025/4/16 Pythonによる機械学習の基礎と実践 オンライン
2025/4/16 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/17 スパース推定の基礎、本質の把握・理解と実装応用技術への展開 オンライン
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 ベイズ推定を用いたデータ解析 オンライン
2025/4/25 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/4/25 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン