技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

マテリアルズ・インフォマティクスの展望と導入に向けたポイント

マテリアルズ・インフォマティクスの展望と導入に向けたポイント

東京都 開催 会場 開催

概要

本セミナーでは、マテリアルズ・インフォマティクスを活用して最適かつ効率よく材料を開発するための手法、設計技術を詳解いたします。

開催日

  • 2018年12月21日(金) 10時00分 17時00分

プログラム

第1部 明日から使えるマテリアルズ・インフォマティクス

(10:00~11:30)

 近年「マテリアルズ・インフォマティックス」というキーワードがよく使われていますが、その本質や概念等に関してはよくわからないという方が多いかと思います。 マテリアルズ・インフォマティックスは計算化学や人工知能といった一見難しそうな技術の塊のように思われますが、実はそれほど難しいものではありません。
 本講演では難しい計算式等は一切使用することなく、マテリアルズ・インフォマティックスの概念や応用分野について説明いたします。

  1. マテリアルズ・インフォマティックスの考え方
    1. インフォマティックスって何?
    2. 色々とあるインフォティックス
  2. MIを支える知識機械学習
    1. 機械学習
    2. 人工知能と機械学習、深層学習とMIとの関わり
    3. 第一原理計算って何?
    4. 第一原理計算の種類
    5. 第一原理計算からわかる事、わからない事
  3. 海外および日本の取り組み
    1. 米国の事例
    2. 欧州の事例
    3. 日本の事例
    • 質疑応答

第2部 スパースモデリングによる 物質・材料設計のための基盤技術の構築

(12:10〜13:40)

 科学をAIの力で加速するAI for ScienceがAIの研究の重要課題の一つである。その主要ターゲットの一つが物質科学であり、本講演ではAI for Scienceのアプ ローチの一つであるデータ駆動科学の基礎技術として、スパースモデリングにつ いて紹介する。
 スパースモデリングは、大量の高次元データから恣意性なしにそ のデータの背後にある仮説 (モデル) を系統的に導くデータ解析を可能にし、2000 年代より爆発的に応用が進んでいる統計学/機械学習の枠組みである。物質・材料におけるスパースモデリングの応用事例しながら、具体的に、どのように物質・ 材料開発へ展開することが可能かを講演する。

  1. スパースモデリングの基礎
    1. データ駆動科学とスパースモデリング
    2. スパースモデリングの基礎
    3. スパースモデリングの2つの戦略 (全状態探索法とLASSOを例に)
  2. SpMの材料・デバイス開発への適用例
    1. 蓄電池電解液の材料探索へのスパースモデリング解析
      1. 線形回帰を用いた全状態探索法による解析
      2. ガウス過程回帰を用いた全状態探索法による解析
    2. 高収率なナノシート合成を実現のためのスパースモデリング解析
  3. スパースモデリングによる物質・材料開発への今後の展開について
    • 質疑応答

第3部 マテリアルズ・インフォマティクスを活用した事例と材料設計の展望

(13:50〜15:20)

 近年、各所で“Materials Informatics (以下、MI) ”が取り沙汰されている。 MIは米国のMaterials Genome Initiativeを発端に世界中に広がった材料開発の新たな流れであり、 材料科学とデータ科学の融合によって材料開発から実用化に要する時間・コストを大幅に削減しようという試みである。
 本講演ではMIの最新動向として、各種材料における活用事例や世界中で整備が進められているデータベースの紹介に加え、今後の更なる活用に向けた課題・展望を紹介する。

  1. マテリアルズ・インフォマティクス
    1. マテリアルズ・インフォマティクスとは
    2. 日本における取組状況
    3. 諸外国における取組状況
  2. 材料データベース
    1. 各国における材料データベースの整備状況
    2. 代表的なデータベース
  3. マテリアルズ・インフォマティクスの活用事例
    1. 無機材料における活用事例
    2. 有機材料における活用事例
  4. マテリアルズ・インフォマティクスを活用した (高分子) 材料設計に向けて
    1. 高分子材料設計への適用の難しさ
    2. 企業での活用に向けた課題
    3. 今後の展望
    • 質疑応答

第4部 物質の階層構造を考慮した 第一原理マテリアルズ・インフォマティクス

(15:30〜17:00)

 マテリアルズ・インフォマティクスへの期待が高まっています。しかし、材料設計のための化学実験データの数は、その特性上、所謂ビッグデータにはなり得ません。即ち、適切な精度と効率を持った理論的手法を援用しつつ、マテリアルズ・インフォマティクスを推進していく必要があります。
 本講座では、講師自身が現在行っている機能性液体のマテリアルズ・インフォマティクス研究と、そこに至るまでに行った第一原理分子シミュレーションによる研究について、そのヒストリーを遡って紹介します。量子化学・分子動力学を基盤とした理論化学者の視点からマテリアルズ・インフォマティクスの展望についてディスカッションします。

  1. 何故、今、マテリアルズ・インフォマティクスか
  2. 理論物理化学 (量子化学・分子動力学) から MI へ
  3. 機能性液体のマテリアルズ・インフォマティクス
  4. マテリアルズ・インフォマティクスの今後の展望
    • 質疑応答

講師

  • 西島 主明
    株式会社KRI エネルギー変換研究部 次世代電池研究室
    次世代電池研究室長
  • 五十嵐 康彦
    筑波大学 システム情報系
    准教授
  • 加藤 幸一郎
    九州大学 大学院 工学研究院 応用化学部門
    准教授
  • 森 寛敏
    お茶の水女子大学 基幹研究院 自然科学系
    准教授

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 60,000円 (税別) / 64,800円 (税込)
複数名
: 55,000円 (税別) / 59,400円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 55,000円(税別) / 59,400円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 60,000円(税別) / 64,800円(税込)
    • 2名様でお申し込みの場合 : 2名で 110,000円(税別) / 118,800円(税込)
    • 3名様でお申し込みの場合 : 3名で 165,000円(税別) / 178,200円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2024/12/6 AI/機械学習と従来型実験データの実用的な組み合わせ方法 オンライン
2024/12/9 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/11 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/13 AI/生成AIを活用した研究開発の意思決定と評価軸の考え方 オンライン
2024/12/13 機械学習/AIによる特許調査の高度化で実践するスマート特許戦略 オンライン
2024/12/13 AI外観検査導入のための基礎と進め方・留意点 オンライン
2024/12/13 マテリアルズ・インフォマティクスの基礎と応用展開および研究事例 オンライン
2024/12/16 AI機械学習の活用・導入のためにこれだけは押さえておきたい数学 超入門 2日間セミナー オンライン
2024/12/16 AI機械学習に的を絞った行列・偏微分・確率密度の超入門 オンライン
2024/12/16 少ないデータによる異常検知技術の導入と活用方法 オンライン
2024/12/17 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2024/12/17 進化計算を利用した多目的最適化技術とその応用 オンライン
2024/12/18 新規用途探索、アイデア発掘への生成AI活用の仕方 オンライン
2024/12/20 機械学習のためのデータ前処理技術とノウハウ オンライン
2024/12/23 AI機械学習原理を理解するための数式読み方入門 オンライン
2024/12/25 マテリアルズ・インフォマティクスの基礎と応用展開および研究事例 オンライン
2025/1/7 少数データ、データ不足における機械学習適用の問題解決方法とその戦略 オンライン
2025/1/14 自然言語処理を活用した研究開発、材料分野への適応事例 オンライン
2025/1/14 プラントのDX化による異常予兆検知、予知保全とその運用 オンライン
2025/1/14 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン

関連する出版物

発行年月
2024/1/12 世界のマテリアルズ・インフォマティクス 最新業界レポート
2023/12/27 実験の自動化・自律化によるR&Dの効率化と運用方法
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2023/4/28 ケモインフォマティクスにおけるデータ収集の最適化と解析手法
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/30 水と機能性ポリマーに関する材料設計、最新応用
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/12/30 実践Rケモ・マテリアル・データサイエンス
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/8/1 材料およびプロセス開発のためのインフォマティクスの基礎と研究開発最前線
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 マテリアルズ・インフォマティクスによる材料開発と活用集