技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

はじめてのPython入門と教師あり学習・教師なし学習

はじめてのPython入門と教師あり学習・教師なし学習

~Windows, Mac, Linux 実習対応~
東京都 開催 会場 開催 PC実習付き

開催日

  • 2017年11月30日(木) 10時30分 16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • Pythonの基本的なコーディング方法
  • Pythonの各種ライブラリの活用方法
  • 代表的な機械学習 (教師あり学習,教師なし学習) の基礎理論
  • Pythonによる機械学習アルゴリズムの実装方法
  • 機械学習によるデータ処理・分析・可視化方法

プログラム

 純粋に最近流行りのPythonを学びたい人から、業務でデータ処理・解析をしたい人まで、幅広い方を対象とします。特に、日々大量のデータを扱っていて、そのデータの山から知識を引き出したいと思っている方は、ぜひ本講座へ参加してみて下さい。
 なお、Pythonでコーディングした経験がない人も歓迎しますが、演習を通して学んでいきますので、他の言語によるプログラミングの経験や知識のある方が望ましいです。

  1. はじめに
  2. 演習環境の構築
    1. Pythonのインストール
    2. 各種ライブラリのインストール
      • NumPy
      • SciPy
      • matplotlib
      • IPython
      • pandas
      • mglearn
      • scikit-learn
  3. Python入門講座
    1. Pythonの特徴
    2. Pythonのコーディング方法
    3. 各種ライブラリの使い方
    4. サンプルコードを用いた実践演習
  4. 教師あり学習
    1. 概要
    2. クラス分類
    3. 回帰
    4. 汎化と過剰適合
    5. k – 最近傍法
    6. 線形モデル
    7. ナイーブベイズ分類器
    8. 決定木
    9. サポートベクトルマシン
    10. ニューラルネットワーク
  5. 教師なし学習
    1. 概要
    2. 前処理
    3. スケール変換
    4. 次元削減
    5. 特徴量抽出
    6. k – means法
    7. 凝集型クラスタリング
    8. DBSCAN
  6. まとめ
    • 質疑応答・名刺交換

講師

会場

品川区立総合区民会館 きゅりあん

4F 第1特別講習室

東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 42,750円 (税別) / 46,170円 (税込)
複数名
: 22,500円 (税別) / 24,300円 (税込)

持参品

本セミナーでは、演習を行いますので、以下の条件を満たしたノートパソコンを持参して下さい。

  • プラットフォームは、Windows、Linux、MacOSを問いません。
  • 可能であれば、事前にPython 3.xをインストールしておいて下さい。インストーラとしては、Anacondaを推奨します。
  • 可能であれば、事前に各種ライブラリ (NumPy、SciPy、matplotlib、IPython、pandas、mglearn、scikit – learn) をインストールしておいて下さい。
  • 演習で使用するライブラリは、USBメモリで準備しておきますが、万が一に備えて、ノートパソコンは無線LAN機能を搭載したものを推奨します。
  • セミナー会場ではWi-Fiによるインターネット接続が行えます。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/16 異常検知・学習データ作成のための生成AI活用 オンライン
2025/4/16 機械学習を用いたスペクトルデータ解析と材料開発への適用 オンライン
2025/4/17 スパース推定の基礎、本質の把握・理解と実装応用技術への展開 オンライン
2025/4/22 マテリアルズインフォマティクスの高分子材料開発への応用 オンライン
2025/4/22 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/4/23 小規模データに対する機械学習の効果的適用法 オンライン
2025/4/23 ベイズ推定を用いたデータ解析 オンライン
2025/4/25 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/4/25 マテリアルズインフォマティクスの基礎と高分子材料設計における応用事例 オンライン
2025/4/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/4/30 未知の異常も検知する人工知能MTシステム (MT法) 基礎と応用入門 オンライン
2025/5/6 ベイズ推定を用いたデータ解析 オンライン
2025/5/7 生成AIを活用したデータ分析の基礎とポイント オンライン
2025/5/7 機械学習のための効率的なデータ取得法と解釈・評価方法 オンライン
2025/5/13 異常検知への生成AI活用と判断の標準化、高精度化 オンライン
2025/5/15 化学工学におけるビッグデータ非依存のニューラルネットワーク活用手法 オンライン
2025/5/16 画像認識技術入門 オンライン
2025/5/19 AI分野における特許戦略 オンライン
2025/5/20 マテリアルズインフォマティクス・第一原理計算の基礎と材料研究への応用 オンライン
2025/5/20 Pythonによるデータ解析の基礎と実務への応用 オンライン

関連する出版物