技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

初めての機械学習・ディープラーニング

初めての機械学習・ディープラーニング

東京都 開催 会場 開催

開催日

  • 2016年12月2日(金) 12時30分16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者
  • 機械学習で課題を抱えている方

修得知識

  • 機械学習の基本技術の理解
    • 強化学習
    • 群知能
    • 進化的計算
    • ニューラルネット
  • 深層学習の技術の具体的理解
    • 畳み込みニューラルネット

プログラム

 本講座では、人工知能研究における機械学習の諸分野をわかりやすく解説し、それらの知識を前提として、近年注目されている深層学習:Deep Learning (ディープラーニング) の技術の原理を示します。
 機械学習に関するさまざまな技術や手法を示すとともに、いくつかの重要な技術については処理手続きやプログラム例を適宜示すことで、これらの技術がどのようなものなのかを具体的に理解できるように紹介して行きます。

  1. 機械学習とは
    1. 学習と機械学習
    2. ディープラーニングの成果
    3. 機械学習とは
    4. ディープラーニングに至る機械学習の歴史
    5. チューリングと機械学習
    6. ダートマス会議
    7. ゲームの学習
    8. 概念の学習・自然言語処理への機械学習の応用
    9. 進化的計算
    10. 群知能
    11. 強化学習
    12. ニューラルネットワークとディープラーニング
  2. 強化学習
    1. 強化学習とは
    2. 教師あり学習・教師なし学習
    3. 強化学習
    4. Q学習による強化学習の実現
    5. Q学習の原理
    6. Q学習のアルゴリズム
    7. Q学習の実装方法
  3. 群知能
    1. 群知能とは
    2. 生物の群れの知的行動
    3. 粒子群最適化法
    4. 蟻コロニー最適化法
    5. 粒子群最適化法による群知能の実現
    6. 粒子群最適化法のアルゴリズム
    7. 粒子群最適化法の実装方法
  4. 進化的手法による機械学習
    1. 進化的手法とは
    2. 生物進化と最適化
    3. 遺伝的アルゴリズム
    4. 遺伝的アルゴリズムの実際
    5. 遺伝的アルゴリズムの処理手続き
    6. 遺伝的アルゴリズムの実装方法
  5. ニューラルネットワークの基礎・構成と使い方
    1. 人工ニューラルネットワーク
    2. 人工ニューロンのモデル
    3. ニューラルネットワーク
    4. ニューラルネットワークの学習
    5. バックプロパゲーションによるニューラルネットワークの学習
    6. バックプロパゲーションの原理
    7. バックプロパゲーションのアルゴリズム
  6. 深層学習:Deep Learning (ディープラーニング)
    1. ディープラーニングとは
    2. ディープラーニングの基礎 (原理、長短所、課題等)
    3. ディープラーニングの具体的技術
    4. ディープラーニングの実装方法
    5. 畳み込みニューラルネットワーク
    6. 畳み込みニューラルネットワークの構成要素
    7. 畳み込みニューラルネットワークの構成方法
  7. 機械学習・ディープラーニングの現状
    1. 機械学習・ディープラーニングでできること
    2. 特微量の学習 (特微量抽出はどの程度可能か?必要な条件は?)
    3. 強化学習・進化的機械学習とディープラーニングとの組み合わせ
    4. 機械学習・ディープラーニングの課題

講師

  • 小高 知宏
    福井大学 工学部 知能システム工学科
    教授

会場

株式会社オーム社 オームセミナー室
東京都 千代田区 神田錦町3-1
株式会社オーム社 オームセミナー室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 44,000円 (税別) / 47,520円 (税込)
1口
: 56,000円 (税別) / 60,480円 (税込) (3名まで受講可)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/10/14 脳波計測・処理・解析・機械学習の基礎と応用および脳波データの活用方法 オンライン
2025/10/15 脳波計測・処理・解析・機械学習の基礎と応用および脳波データの活用方法 オンライン
2025/10/16 インフォマティクスと近赤外光による高分子材料の劣化予測 オンライン
2025/10/17 バイオ医薬品開発効率化のためのタンパク質の合理的デザイン法とそのノウハウ オンライン
2025/10/20 バイオ医薬品開発効率化のためのタンパク質の合理的デザイン法とそのノウハウ オンライン
2025/10/20 高分子・樹脂材料のための画像解析入門 オンライン
2025/10/23 画像認識技術を用いたAI外観検査の現場導入事例と精度向上技術 オンライン
2025/10/27 AI外観検査の導入プロセスと実践ノウハウ オンライン
2025/10/28 AI外観検査の導入プロセスと実践ノウハウ オンライン
2025/10/28 はじめての研究開発での機械学習活用と社内推進のポイント オンライン
2025/10/28 機械学習原子間ポテンシャルの基礎と構築法・応用例・課題と展望 オンライン
2025/10/29 はじめての研究開発での機械学習活用と社内推進のポイント オンライン
2025/10/30 マテリアルズ・インフォマティクス入門 オンライン
2025/11/5 高分子材料の開発・設計における計算科学やAI・MI活用の最新動向 オンライン
2025/11/6 高分子材料の開発・設計における計算科学やAI・MI活用の最新動向 オンライン
2025/11/10 生成AIを活用した異常検知と判断の標準化、高精度化への活用 オンライン
2025/11/11 強化学習の基礎・発展と機械・ロボット制御への応用 オンライン
2025/11/11 MTシステム (MT法) の基礎および異常検知・異常モニタリング・予防保全技術入門 オンライン
2025/11/11 生成AIを活用した異常検知と判断の標準化、高精度化への活用 オンライン
2025/11/12 ラボオートメーションの導入、設計に向けた機器、装置の選定と制御のポイント オンライン

関連する出版物

発行年月
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化
1993/3/1 新しいサーボ制御の基礎と実用化技術