技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

深層強化学習の具体的な使い方とポイント

深層強化学習の具体的な使い方とポイント

東京都 開催 会場 開催

開催日

  • 2019年4月4日(木) 10時00分17時00分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者

修得知識

  • ニューラルネットワークの基礎
  • ディープラーニングの基礎
  • ディープラーニングの事例

プログラム

ロボットや自動車などの自律制御に向けて、深層強化学習が注目されている。強化学習は古くから研究されているが、深層学習の登場により、これらを組み合わせてより高い精度を達成することができている。その代表的な例がAlphaGoであり、世界チャンピオンとの囲碁の対戦で勝利するまで至っている。本講演では、強化学習および深層強化学習の仕組みと最新の事例を紹介する。また、実際に活用するためのフレームワークやコツなどについても深く紹介する。

  1. 強化学習について
    1. 強化学習はどんなことができるのか
    2. 強化学習の概念
    3. 強化学習とは
    4. 強化学習の目的
  2. 深層強化学習のアルゴリズム
    1. 強化学習アルゴリズムマップ
    2. Q-Learningとは
    3. Q-Learningの問題点
    4. DQN
    5. Double DQN
    6. Actor-Critic
    7. A3C
    8. UNREAL
    9. 学習の安定化のために
  3. 深層強化学習のフレームワーク
    1. 強化学習を行うために
    2. OpenAI Gymとは
    3. OpenAI Gymの使い方とは
    4. MuJoCoとは
    5. MuJoCoを使うには
    6. ChainerRLとは
    7. ChainerRLの使い方
  4. 深層強化学習のコツ
    1. 深層強化学習のメリット・デメリット
  5. 仮想環境を用いた強化学習
    1. 強化学習によるロボットの動作獲得
    2. シミュレータを用いた強化学習
    • 質疑応答

講師

  • 山下 隆義
    中部大学 工学部 情報工学科
    教授

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 54,000円 (税込)
複数名
: 45,000円 (税別) / 48,600円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 45,000円(税別) / 48,600円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 54,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 97,200円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 145,800円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/7/2 深層学習と適応フィルタ オンライン
2025/7/8 少ないデータによるAI・機械学習の進め方、活用の仕方 オンライン
2025/7/8 ベイズ統計学の基礎と機械学習応用に向けたポイント オンライン
2025/7/15 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/16 開発の質と効率を向上する汎用的インフォマティクス & 統計的最適化 実践入門 オンライン
2025/7/22 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/23 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/23 第一原理計算と機械学習を活用した材料設計と応用展開 オンライン
2025/7/24 外観検査のデジタル化・自動化 オンライン
2025/7/24 AI関連発明の出願戦略のポイントと生成AIを巡る知財制度上の留意点 オンライン
2025/7/24 レーザー加工分野における機械学習の活用手法 : 特に少ない実験データ数を用いた場合 オンライン
2025/7/25 レーザー加工分野における機械学習の活用手法 : 特に少ない実験データ数を用いた場合 オンライン
2025/7/28 外観検査のデジタル化・自動化 オンライン
2025/7/29 人工知能応用技術ディープニューラルネットワークモデルとMTシステムの基礎・学習データ最小化・エンジニアリング応用入門 オンライン
2025/7/30 Pythonを利用したデータ分析の基礎講座 オンライン
2025/7/30 ケモインフォマティクスと機械学習による化学データ解析 オンライン
2025/7/31 センサから取得した時系列データの処理・解析技術と機械学習の適用 オンライン
2025/7/31 スモールデータ解析の方法と実問題解決への応用 オンライン
2025/7/31 Pythonを利用したデータ分析の基礎講座 オンライン
2025/7/31 ケモインフォマティクスと機械学習による化学データ解析 オンライン

関連する出版物

発行年月
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2013/6/21 機械学習によるパターン識別と画像認識への応用
2003/6/27 ニューアルゴリズムによる画像処理システム事例解説
2001/9/28 MATLABプログラム事例解説Ⅱ アドバンスド通信路等化
1993/3/1 新しいサーボ制御の基礎と実用化技術