技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

逆強化学習入門

Zoomを使ったライブ配信セミナー

逆強化学習入門

~報酬関数推定を介した強化学習~
オンライン 開催

開催日

  • 2020年10月28日(水) 10時30分16時30分

修得知識

  • 逆強化学習の基本的な原理
  • 代表的な逆強化学習手法の概要
  • 報酬関数推定を介した強化学習の有用性と課題

プログラム

 強化学習は、a) システムに対する要求が明確である一方、b) それを満足するシステムの挙動の設計が困難な問題に対して有効なアプローチの1つです。ここで、a) のシステムに対する要求は、学習者の意思決定に対する評価である報酬関数によって表現されます。しかし、報酬関数は学習の安定性や効率などにも影響を与えるため、その設計は煩雑になりがちです。また、そもそもシステムに対する要求を報酬関数として書き下すことが困難な問題も存在します。
 このような背景から、手動で報酬関数を設計する代わりに他者の振る舞いを観測し、その振る舞いを説明する報酬関数を推定する、逆強化学習と呼ばれるアプローチが考案されました。
 本セミナーでは、強化学習の原理と特徴を俯瞰した上で、逆強化学習の基本的な考え方を解説します。また、代表的な逆強化学習手法及び関連する研究事例についても紹介します。受講者がご自身で逆強化学習を実装し、試していただくためのサポートとなるよう、基礎的な内容に重きを置いたセミナーを目指します。

  1. はじめに
  2. 強化学習
    1. 概要
    2. 問題設定
    3. ベルマン方程式
    4. 離散系における強化学習
    5. 連続系における強化学習
  3. 逆強化学習
    1. 概要
    2. 強化学習と逆強化学習の関係
    3. 問題設定
    4. 基本的な考え方
    5. 線形モデル
    6. 非線形モデル
  4. 応用的な手法に関する研究事例の紹介
  5. まとめ

講師

  • 増山 岳人
    名城大学 理工学部 電気電子工学科
    准教授

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 46,000円 (税別) / 50,600円 (税込)
1口
: 57,000円 (税別) / 62,700円 (税込) (3名まで受講可)

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境 をご確認いただき、 ミーティングテスト にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は郵送にて前日までにお送りいたします。電子媒体での配布はございません。
  • 開催まで4営業日を過ぎたお申込みの場合、セミナー資料の到着が、開講日に間に合わない可能性がありますこと、ご了承下さい。
    ライブ配信の画面上でスライド資料は表示されますので、セミナー視聴には差し支えございません。
    印刷物は後日お手元に届くことになります。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2026/1/26 外観検査 (2日間) オンライン
2026/1/26 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/1/28 ディジタルフィルタを理解する オンライン
2026/1/28 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/1/30 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/2 AI・IoT時代の生産現場を支えるデジタル信号処理の基礎と実践応用テクニック オンライン
2026/2/4 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/5 AI外観検査の導入プロセスと実践ノウハウ オンライン
2026/2/6 データ分析およびAIエージェントの基礎と活用に向けたポイント オンライン
2026/2/13 AI外観検査 (画像認識) のはじめ方、すすめ方、精度の向上 オンライン
2026/2/17 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/24 産業設備の保全/管理へのAI・機械学習の活用と実践ノウハウ オンライン
2026/2/24 機械学習原子間ポテンシャル (MLIP) の基礎と実践的活用法 オンライン
2026/2/25 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/25 データ分析のポイントと生成AIの活用 オンライン
2026/2/26 AIエージェント×ビジネスデータ分析の基礎と実践 オンライン
2026/2/26 マテリアルズインフォマティクスの動向と少ないデータへの適用事例 オンライン
2026/2/27 時系列データ解析の基礎と進め方のポイント オンライン
2026/2/27 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン
2026/3/2 未知の不良や異常も検知する検査・センシング・モニタリングに適した人工知能 オンライン