技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

製造現場で使える実用的な人工知能技術とその実践

製造現場で使える実用的な人工知能技術とその実践

東京都 開催 会場 開催

開催日

  • 2020年5月14日(木) 10時00分 17時00分

プログラム

 最先端技術であるディープラーニングが話題になり、人工知能ブームが再来していると言われています。最先端の技術は重要ではありますが、製造業の技術者が開発実務に活用するには敷居が高いことが課題ではないでしょうか? このように人工知能には、活用が難しいイメージがありますが、ものづくり分野に絞れば、適切な手法の使い分けとノウハウで意外と簡単に活用可能です。ディープラーニングを含む人工知能にも、アカデミックな最先端技術に対して成熟した「エンジニアリングに適した技術」があり、その技術はものづくりの開発現場で安心して使うことが可能です。
 本講座では、エンジニアリングに適した人工知能技術であるニューラルネットワークモデルとMTシステムに関して、基礎的な解説を行った上で、製造業における具体的な事例を用いて応用ノウハウを解説します。ものづくり技術者にとって、人工知能は目的ではなく、技術課題を解決する手段として使えることが理想的です。本講座で解説するエンジニアリングに適した人工知能技術を使うことで、技術者は、解決すべき技術課題に集中することが可能になります。なお、ニューラルネットワークモデルをExcel上で簡単に構築する方法も、デモンストレーションを併用して解説いたします。

  1. 人工知能活用による事例概要
    1. エンジニアから見た人工知能技術 概要
    2. 製造業に特化した人工知能活用 (本講義) の全体像
    3. 設計、材料、生産条件を統合した現実さながらの予測式構築と自動開発技術概要
      • 開発実験環境の仮想化技術
      • レシピジェネレーター技術
    4. 加工状況データから加工品質を推定する検査機レス検査技術概要
      • 仮想検査技術
      • センサレスセンシング技術
    5. 未学習の未知異常検知技術概要
      • 異常モニタリング
      • 予防保全技術
  2. 人工知能技術の概要
    1. 要素技術者から見た開発ツールとしての人工知能技術の比較
    2. 参考:データ採取のポイント (ビッグデータの誤解)
    3. 補足:ニューラルネットワークモデルはブラックボックス?
    4. 要素技術者に適した人工知能構築ツールの比較
  3. ニューラルネットワークモデル構築の実演
    1. 簡単な関係性を人工知能に学習させ、その後推定させる
    2. 複雑な関係性を人工知能に学習させ、その後推定させる
    3. 品質工学、実験計画法の直交表を応用した学習データ
    4. 推定に問題ある場合の対処法1
    5. 推定に問題ある場合の対処法2
    6. 難しい排他的論理和問題を人工知能に解かせる
  4. 事例1 ニューラルネットワークモデル活用
    • 設計、材料、生産条件を統合した現実さながらの予測式構築と自動開発技術
      • 開発実験環境の仮想化
      • レシピジェネレーター技術
      • 毎年繰返し行っていた電磁石コイルの開発を、設計条件と生産条件を合わせてパソコン上で自動開発を可能にした事例を解説
      1. 背景:電磁石コイルの繰返し開発の紹介
      2. 製品設計部門と工法開発部門、量産部門の役割分担
      3. 汎用巻線技術の開発 – 設計条件と設備条件の密接な関係
      4. 個別最適解を求める「設計条件×設備条件=性能の平均値とバラつき」方程式の探求
      5. 人工知能活用の実施手順
      6. データ収集の実験計画とその勘所
      7. データの説明性確保の課題と解決策
      8. データ数不足の解決策 要素技術を活かしたデータ増殖
      9. 試作レス開発環境の構築例
      10. 人工知能の推定が間違った場合の対処方法
      11. 本事例を応用可能な別事例の紹介
  5. 事例2 ニューラルネットワークモデル活用
    • 加工状況データから加工品質を推定する検査機レス検査技術
      • 仮想検査技術
      • センサレスセンシング技術
      • 溶接の抜取り破壊検査工程を、溶接と同時に溶接強度を推定し、全数検査と量産品質トレンドや設備状態のモニタリングを可能にした事例を解説
      1. 背景:溶接と抜取り破壊検査の紹介
      2. 全数検査化に先立つ要素技術
      3. 人工知能活用の実施手順
      4. データ収集、及び人工知能による強度推定のシステム構築例
      5. システムの動作フローチャート
      6. 本事例を応用可能な別事例の紹介
  6. 事例3 MTシステム活用
    • 未学習の未知異常検知技術
      • 異常モニタリング
      • 予防保全技術
      • 事前に学習できない未知の異常・不良を検出したい場合の対処方法を、エンジンの異常音など、聴感による人的官能検査工程を自動化した事例を元に解説
      1. 背景:異常音で判断する官能検査工程の紹介
      2. 定義できる不良音と定義できない不良音。未知の不良を見つける必要性
      3. MTシステム (MT法) とは
      4. 人工知能活用の実施手順
      5. データ収集、及び人工知能による異常音推定システム構築例
      6. システムの動作フローチャート
        • 本事例を応用可能な別事例の紹介
  7. 全体質疑応答

講師

会場

株式会社 技術情報協会
東京都 品川区 西五反田2-29-5 日幸五反田ビル8F
株式会社 技術情報協会の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 50,000円 (税別) / 55,000円 (税込)
複数名
: 45,000円 (税別) / 49,500円 (税込)

複数名同時受講割引について

  • 2名様以上でお申込みの場合、
    1名あたり 45,000円(税別) / 49,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 50,000円(税別) / 55,000円(税込)
    • 2名様でお申し込みの場合 : 2名で 90,000円(税別) / 99,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 135,000円(税別) / 148,500円(税込)
  • 同一法人内による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 他の割引は併用できません。

アカデミック割引

  • 1名様あたり 30,000円(税別) / 33,000円(税込)

学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、大学院の教員、学生に限ります。

本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時
2020/5/29 畳み込みニューラルネットワーク (CNN) を用いたノンリファレンス型画像品質評価 オンライン
2020/6/3 実践 ディープラーニング 一日速習セミナー オンライン
2020/6/9 統計的機械学習の基礎、データ生成モデル、データマイニングとAI 東京都
2020/6/10 音による故障検知および故障予知 オンライン
2020/6/11 医療機器QMSに有効な統計手法とサンプルサイズ決定方法 大阪府
2020/6/15 物質・材料研究におけるデータ科学の活用:基礎と応用 東京都
2020/6/15 小規模データに対する機械学習、深層学習の適用 東京都
2020/6/16 統計的データ処理のための確率統計・線形代数入門 オンライン
2020/6/17 製造業における「人工知能」の基礎と自動設計・仮想検査・未知の異常検知への応用入門 オンライン
2020/6/22 少ない学習データを用いた高効率な機械学習とAIの業務への導入を成功させるコツ オンライン
2020/6/23 工場・化学プラントにおける機械学習・AIを活用した故障予測・予知の方法 東京都
2020/6/23 強化学習の入門と業務課題への適用の検討 東京都
2020/6/25 IoT、AIを使った回転機械の異常検知、故障予知のポイント オンライン
2020/6/25 機械学習の基礎と応用が分かる一日速習セミナー 東京都
2020/6/25 Pythonによるマテリアルズ・インフォマティクスの基礎と実践 東京都
2020/6/26 スパースモデリング入門 東京都
2020/6/29 画像認識のためのパターン認識・機械学習の基礎と深層学習 東京都
2020/6/29 時系列データ、言語データ、画像データに対する機械学習のための前処理 オンライン
2020/6/30 自然言語処理の基礎と応用 東京都
2020/7/1 エンジニアのための実験計画法 & Excel上で構築可能な人工知能を併用する非線形実験計画法入門 オンライン