技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

プラスチックフィルムの表面処理・改質技術と接着性の改善・評価方法

プラスチックフィルムの表面処理・改質技術と接着性の改善・評価方法

~表面処理でフィルム表面に何が起こるのか / 各種の表面処理技術のメリット・デメリット / 表面処理と接着力の関係を明らかにする~
東京都 開催 会場 開催

開催日

  • 2019年10月29日(火) 10時30分 16時30分

修得知識

  • 表面処理の基礎
  • 官能基の存在と接着力
  • 多くの表面処理法のメリット、デメリット
    • コロナ処理
    • 低圧プラズマ処理
    • 大気プラズマ処理
    • 火炎処理
    • 紫外線処理
    • シランカップリング剤処理
    • イソシアネート処理
    • グラフト処理など
  • 表面処理と接着力の関係

プログラム

 最近では高分子材料が単独で用いられることは少なくなっている、異なった高分子同士の積層、繊維や金属等との複合材料化などが行われている。具体的なものでは、例えば積層回路の作製には高分子である基板と異種材料の接着は欠かせない技術である。また、塗料のコーティングなども接着にかかわることである。接着剤も重要ではあるが、材料間に安定した接着強度を得るには高分子自身の表面改質が必須の条件である。
 本セミナーでは多岐にわたる表面処理について演者の経験を基に解説する。

  1. 表面と接着
    1. 接触角とYoung式
    2. ぬれと表面張力
      1. 表面張力の測定
      2. 液体の表面張力
      3. 高分子の表面張力
      4. Zismanのプロット
    3. ぬれと官能基
    4. 官能基の極性
  2. 接着の基本
    1. 原子間力 (分子間力)
      1. ファンデアワールス力
        1. 常温接合
        2. 熱溶着
        3. レーザー溶着
        4. 溶剤接着
        5. ゲル接着
      2. 水素結合力
    2. 化学結合力
      1. イソシアネート (ウレタン) 結合
      2. エポキシ結合
      3. シランカップリング剤結合
  3. 接着強度
    1. 接着の4条件
    2. 水分効果
    3. 表面脆弱層 (WBL)
    4. 表面粗さ
      1. 粗さの表現
      2. 粗さと接着強度
  4. 表面処理
    1. 表面処理の基本
    2. コロナ処理
      1. 湿度効果
      2. 電極形状効果
      3. 雰囲気ガス効果
    3. 低圧プラズマ処理
    4. 大気圧プラズマ処理
      1. 考え方
      2. 具体的方法
      3. 実用例
    5. 窒素置換雰囲気コロナ処理
    6. 紫外線処理
    7. 火炎処理
      1. 燃料と空気の混合比
      2. ケイ素化合物添加効果
    8. シランカップリング剤処理
      1. 溶液濃度効果
    9. グラフト化処理
  5. 処理表面のキャラクタリゼーション
    1. X線光電子分析法 (XPS)
      1. 元素分析
      2. 波形分離法による官能基分析
      3. 化学修飾法による官能基定量
    2. 全反射赤外分光法 (FT-IR)
    3. 原子間力顕微鏡法 (AFM)
    4. 飛行時間型二次イオン分析法 (TOF-SIMS)
  6. 表面処理に伴う分子構造の変化
    1. 空気雰囲気
      1. ポリオレフィン
      2. ポリイミド
      3. ポリエチレンテレフタレート
      4. ポリエーテルエーテルケトン
    2. 不活性ガス雰囲気
      1. He, Ar
      2. 窒素
    3. 処理効果の経時変化
  7. 実例
    1. 表面処理による塗膜の接着強度の改善
    2. LDPEとPETの接着
    3. PVAcのコロナ処理による接着性改善
    • 質疑応答

講師

会場

品川区立総合区民会館 きゅりあん

5F 第1講習室

東京都 品川区 東大井5丁目18-1
品川区立総合区民会館 きゅりあんの地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 42,750円 (税別) / 47,020円 (税込)
複数名
: 22,500円 (税別) / 24,750円 (税込)

複数名同時受講の割引特典について

  • 2名様以上でお申込みの場合、
    1名あたり 22,500円(税別) / 24,750円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 42,750円(税別) / 47,020円(税込)
    • 2名様でお申し込みの場合 : 2名で 45,000円(税別) / 49,500円(税込)
    • 3名様でお申し込みの場合 : 3名で 67,500円(税別) / 74,250円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」と記入ください。
  • 他の割引は併用できません。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/4/17 プラスチック/ゴムの劣化・破壊メカニズムとその事例および寿命予測法 オンライン
2025/4/17 低誘電性樹脂の開発と伝送損失の低減、高速・高周波通信への対応 オンライン
2025/4/17 メタルレジストの特徴とEUV露光による反応メカニズム オンライン
2025/4/18 ラジカル重合 基礎講座 オンライン
2025/4/18 電気光学 (EO) ポリマーの基礎と評価技術および光制御デバイスへの応用 オンライン
2025/4/18 接着・接合の強度評価および強度向上のための破壊力学 オンライン
2025/4/21 はじめてのプラスチック材料と成形法 オンライン
2025/4/21 レオロジー測定・データ解釈の勘どころ オンライン
2025/4/21 UV硬化樹脂の硬化不良要因と硬化状態の測定・評価技術 オンライン
2025/4/21 ゴム・プラスチック材料の破損、破壊原因とその解析法 東京都 会場
2025/4/21 微生物劣化のメカニズムと対策技術 東京都 会場
2025/4/21 サーキュラーエコノミーが目指す持続可能な社会におけるプラスチックの使い方 オンライン
2025/4/21 常温型フッ素コーティングによる防湿・絶縁・耐酸・撥水・撥油・離型技術とPFAS規制 オンライン
2025/4/22 5G/6G時代の高周波基板材料に求められる特性と材料設計・低誘電損失化技術 オンライン
2025/4/22 ポリマーアロイの基本、構造・物性および新規ポリマーアロイの材料設計の必須 & 実践知識 オンライン
2025/4/23 超分子架橋を駆使した機能性高分子材料 オンライン
2025/4/23 微粒子・ナノ粒子の作製・表面修飾・分散と応用 オンライン
2025/4/23 ゲル化剤・増粘剤の基礎・特性・評価法 オンライン
2025/4/23 プラスチック強度設計に必要な材料特性と設計の進め方 オンライン
2025/4/23 高分子材料 (樹脂・ゴム材料) における変色劣化の機構とその防止技術 オンライン

関連する出版物

発行年月
2022/5/31 樹脂/フィラー複合材料の界面制御と評価
2022/5/31 自動車マルチマテリアルに向けた樹脂複合材料の開発
2022/5/30 世界のバイオプラスチック・微生物ポリマー 最新業界レポート
2022/5/20 コーティング技術の基礎と実践的トラブル対応
2021/12/24 動的粘弾性測定とそのデータ解釈事例
2021/7/30 水と機能性ポリマーに関する材料設計、最新応用
2021/7/28 プラスチックリサイクル
2021/6/29 UV硬化樹脂の開発動向と応用展開
2021/5/31 重合開始剤、硬化剤、架橋剤の選び方、使い方とその事例
2021/5/31 高分子材料の劣化・変色対策
2021/4/30 建築・住宅用高分子材料の要求特性とその開発、性能評価
2021/3/26 超撥水・超撥油・滑液性表面の技術 (第2巻) (製本版 + ebook版)
2021/3/26 超撥水・超撥油・滑液性表面の技術 (第2巻)
2021/1/29 高分子材料の絶縁破壊・劣化メカニズムとその対策
2021/1/29 異種材料の接着・接合技術と応用事例
2020/11/30 高分子の延伸による分子配向・結晶化メカニズムと評価方法
2020/11/30 高分子の成分・添加剤分析
2020/10/30 ポリウレタンを上手に使うための合成・構造制御・トラブル対策及び応用技術
2020/9/30 食品容器包装の新しいニーズ、規制とその対応
2020/3/31 自己修復材料、自己組織化、形状記憶材料の開発と応用事例