技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

スパース性を用いた機械学習手法

スパース性を用いた機械学習手法

東京都 開催 会場 開催

概要

本セミナーでは、スパース学習の基礎から解説し、スパース学習が有効な統計モデル、スパース学習手法、応用事例、効率的な最適化手法について詳解いたします。

開催日

  • 2016年2月24日(水) 13時30分16時30分

受講対象者

  • 機械学習の応用分野に関連する技術者、研究者
    • 画像処理
    • 信号処理
    • 医療福祉
    • スポーツ分野
    • セキュリティ (監視カメラ、警備、防犯)
    • ロボット
    • コンピュータビジョン
    • 異常行動検出、異常領域検出
    • 統計
    • 経済学 など
  • 機械学習、パターン認識分野の技術者、研究者
  • これから機械学習、パターン認識に携わる技術者、開発者

修得知識

  • スパース学習の基礎
  • スパース学習が有効な統計モデル
  • スパース学習の手法
  • スパース学習の応用事例
  • スパース学習の効率的な最適化手法

プログラム

 機械学習の応用において、画像や遺伝子データといった高次元データは頻繁に現れ、その重要性は高い。高次元データ解析には、データの含む不必要な情報に学習結果が影響され、過学習を引き起こしやすいという難しさがある。このような問題を回避する有効な方法として「スパース学習」がある。スパース学習は、データの本質的に意味のある情報の低次元性 (スパース性) を利用し、目的に関係ない情報を削除しながら学習をする方法である。
 本講義では、スパース学習の全体像を概略的に説明する。まず、スパース学習が有効な統計モデルを紹介し、その上でどのようなスパース学習手法があるかを解説する。そして、その統計理論や、画像処理などのいくつかの応用も紹介する。さらに、スパース学習を実現させる計算手法として、効率的な最適化手法も講義する。

  1. 特徴選択の問題
  2. 各種正則化学習法
    • L1正則化
    • グループ正則化
    • トレースノルム正則化
    • 階層的正則化
    • グラフ型正則化
  3. 各種正則化に対応するスパース性
  4. スパース学習の統計的学習理論
  5. スパース学習を用いた高次元データの統計的検定手法
  6. 画像処理とスムージング
  7. 正則化学習法の最適化手法
    • 近接勾配法
    • 確率的勾配降下法
    • 確率的座標降下法
    • 確率的分散縮小勾配法

講師

  • 鈴木 大慈
    東京工業大学 情報理工学研究科 数理・計算科学専攻
    准教授

会場

あすか会議室 神田小川町会議室
東京都 千代田区 神田小川町2丁目1番地7 日本地所第7ビル
あすか会議室 神田小川町会議室の地図

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 43,000円 (税別) / 46,440円 (税込)
1口
: 56,000円 (税別) / 60,480円 (税込) (3名まで受講可)

割引特典について

  • 複数名 同時受講:
    1口 56,000円(税別) / 60,480円(税込) (3名まで受講可能)
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/12/16 分析法バリデーションのための統計解析入門と分析能パラメータ計算および基準値設定法入門 オンライン
2025/12/17 触感・感性トライボロジーの最先端 ヒトとモノの間に宿る感触知と作り込み オンライン
2025/12/17 オーファンドラッグの患者数、売上予測と事業化のポイント オンライン
2025/12/18 粉体・流体シミュレーションと機械学習による濾過プロセスの最適化 オンライン
2025/12/19 粉体・流体シミュレーションと機械学習による濾過プロセスの最適化 オンライン
2025/12/19 未知の異常も検知する製造業向け人工知能技術MTシステムの基礎および適用事例 オンライン
2025/12/19 分析法バリデーションコース (2日間) オンライン
2025/12/19 ICH Q2 (R2) 、Q14をふまえた承認申請時の分析法バリデーションの留意点 オンライン
2025/12/23 データ駆動科学基礎とPythonによる実践 オンライン
2025/12/23 統計学が専門でない人向けのサンプルサイズ設定演習 オンライン
2025/12/24 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2025/12/24 データ駆動科学基礎とPythonによる実践 オンライン
2025/12/24 アンケート・官能評価の多変量解析 統計解析の応用編 オンライン
2026/1/6 工場における画像認識AIの自社開発とその実装の進め方 オンライン
2026/1/13 異常検知への生成AI、AIエージェント導入と活用の仕方 オンライン
2026/1/14 分析法バリデーションコース (2日間) オンライン
2026/1/14 ICH Q2 (R2) 、Q14をふまえた承認申請時の分析法バリデーションの留意点 オンライン
2026/1/15 逆問題解析による材料の構造、プロセス条件設計 オンライン
2026/1/15 Pythonではじめる機械学習応用講座 オンライン
2026/1/15 強化学習の基礎から最新動向と機械制御への応用 オンライン

関連する出版物

発行年月
2024/10/31 少ないデータによるAI・機械学習の進め方と精度向上、説明可能なAIの開発
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/8/31 医療機器の設計開発における統計的手法とそのサンプルサイズ設定
2021/10/25 AIプロセッサー
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2018/4/25 統計学的アプローチを活用した分析法バリデーションの評価及び妥当性
2017/5/10 分析法バリデーション実務集
2013/6/21 機械学習によるパターン識別と画像認識への応用
1993/3/1 新しいサーボ制御の基礎と実用化技術