技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー
アーカイブ配信で受講をご希望の場合、視聴期間は2025年9月25日〜10月5日を予定しております。
アーカイブ配信のお申し込みは2025年9月25日まで承ります。
本セミナーでは、プロセスインフォマティクスについて基礎から解説し、化学プロセスにおける前処理、モデル選定、小規模データ対応の実践ノウハウを解説いたします。
(2025年9月25日 10:00〜11:30)
データ科学によって化学プロセスデータの利活用を促進し、研究・開発を加速することを目指すプロセス・インフォマティクスやケモインフィマティクスが高い注目を集めています。特に、反応プロセス環境や物質・材料の状態をモニターするためには欠かすことができないスペクトル解析に目を向けると、スペクトルデータを大量に取得できる装置環境が整ってきているとはいえ、複雑な形状をとるものや、フィッティングにかかる手間などから網羅的に解析・情報抽出を実施することが困難になってきています。
本講演は、このようなスペクトルデータ解析の課題に注目をし、取得したスペクトルデータからの情報抽出のための機械学習活用について、「分類」「低次元化」「回帰」「ピーク検知」といった視点から、機械学習の数理的な側面も交えながら基礎的な内容を紹介します。
(2025年9月25日 12:15〜13:45)
素材・材料開発における製造プロセスの最適化は、材料開発において高品質な製品を効率的に生産するために欠かすことはできない。プロセスインフォマティクスは、材料の化学反応や物理的変化を適切に制御し、理想的な材料特性を作りこむための技術であり、材料開発の効率化、製品の品質向上、品質ばらつきの低減、生産コストの削減に直結する。製造プロセスは、原料の種類や投入手法、反応条件など多くの制御因子が互いに複雑に関係しあっており、適切な制御は容易ではない。従来の原因解明型の管理方法では、課題の再発や新たな課題の発生が避けられないことが多く、これを解決するためにインフォマティクス技術の活用が進められている。通常、製造プロセスで扱われるデータは、因子が複雑で、膨大である。これらデータの前処理、可視化が、プロセスインフォマティクスを有効に活用するための重要なポイントであり、製造プロセスの最適化の成否を左右する。
本講演では、当社が実際に取り組んだ製造プロセスの最適化に関する事例を紹介し、製造プロセスにおけるデータの前処理、可視化の重要性やデータ解析の手法などの具体的な進め方について説明する。また、世界中で活発に取り組みが進められている実験自動化・自律化への期待とその実現に向けた当社の取り組みについても紹介する。
(2025年9月25日 14:00〜15:30)
プロセスインフォマティクスでは、製造装置の構成や運転条件など膨大な組み合わせの中から、目標性能を達成する最適プロセス条件を、情報技術を用いて高速に見出し、開発時間を大幅に短縮することを目的の一つとする。このような文脈では、データから有用な情報を引き出すために機械学習モデルを構築し、それを用いてプロセスの予測や制御、異常検知などを行うケースが多い。その際、モデルの入力となる説明変数の選択とモデルのハイパーパラメータ (学習アルゴリズムの設定値) の最適化は、モデル精度・汎化性能や解釈性に直結する重要な課題である。
このセッションにおいては、説明変数選択とハイパーパラメータ最適化について説明する。
(2025年9月25日 15:45〜17:15)
近年、新聞・テレビ・ウェブメディアなどのあらゆる場面で「機械学習」や「AI」という言葉を見聞きする機会が飛躍的に増えました。しかし、一口にAIと言っても、その内部には目的や構造の異なる多彩なアプローチが存在します。
本講演では、その広大なAIの世界の中でも特に存在感を放つ「ニューラルネットワーク」にスポットを当て、仕組みと現場での活用テクニックを平易に解説します。ニューラルネットワークは“万能関数”とも称され、画像認識から自然言語処理まで幅広いタスクをこなせる一方で、その万能性ゆえに学習データへ過度に適合する「過学習」に陥りやすいという課題を抱えています。特にデータ量が限られる環境では、モデルの特性を理解したうえで、正則化や転移学習、モデル構造の制約といった工夫を組み合わせることが不可欠です。
講演では「実務でニューラルネットワークを使ってみたいが、どこから手を付ければよいか分からない」と感じる初学者を主対象に、まず利点と弱点を整理し、その後CNN・RNN・GNNなど構造の異なるネットワークを例示しながら、それぞれがどのようなシーンで効果を発揮するかを紹介します。参加者が自身の課題に合ったモデルを選び、適切なパラメータ設定と評価方法を検討できるようになることをゴールとしています。講演内では化学工学分野におけるニューラルネットワークの活用事例も紹介する予定です。
日本国内に所在しており、以下に該当する方は、アカデミック割引が適用いただけます。
| 開始日時 | 会場 | 開催方法 | |
|---|---|---|---|
| 2026/1/19 | マテリアルズ・インフォマティクスの実践と低誘電材料開発への応用 | オンライン | |
| 2026/1/19 | 実験の実務 : 実験を効率化して確実に成果を生む実験ノート (記録) の書き方 | オンライン | |
| 2026/1/22 | 生成AI/AIエージェントを活用した研究開発業務の自動化・自律化 | オンライン | |
| 2026/1/26 | 機械学習と脳科学におけるベイズ統計 | オンライン | |
| 2026/1/26 | Pythonを用いた実験計画法とその最適化 | オンライン | |
| 2026/1/28 | Excelによる蒸留の基礎と蒸留技術計算への応用 | オンライン | |
| 2026/1/29 | 各種分子シミュレーションを用いた高分子研究、材料解析の考え方、その選び方と使い方 | オンライン | |
| 2026/1/29 | 分子動力学法の進め方と高分子材料開発への応用 | オンライン | |
| 2026/1/29 | やさしく学ぶベイズ統計 | オンライン | |
| 2026/1/30 | 技術者・研究者のための実験計画法入門 | オンライン | |
| 2026/1/30 | やさしく学ぶベイズ統計 | オンライン | |
| 2026/1/30 | 量産に耐えうる最適設計仕様を導く非線形ロバスト最適化 / 非線形ロバストデザイン | オンライン | |
| 2026/2/4 | 実験の実務 : 効率的、確実に目的を達成できる実験内容の考え方 | オンライン | |
| 2026/2/9 | 実験計画法のためのデータ解析・ベイズ最適化の基礎と材料・プロセス・装置設計への適用・最新事例 | オンライン | |
| 2026/2/9 | 分子動力学法の進め方と高分子材料開発への応用 | オンライン | |
| 2026/2/17 | 実験計画法 入門講座 | オンライン | |
| 2026/2/18 | マテリアルズインフォマティクスによる材料開発の効率化 | オンライン | |
| 2026/2/19 | R&D部門のデータ共有・利活用 (MI, AI) のためのデータ共有システム構築と進め方 | オンライン | |
| 2026/2/19 | ベイズ統計モデリングの基本的な考え方とモデルの立て方、結果の解釈 | オンライン | |
| 2026/2/20 | マテリアルズインフォマティクスの基盤となる「計算科学シミュレーション技術」 | オンライン |
| 発行年月 | |
|---|---|
| 2025/3/31 | ベイズ最適化の活用事例 |
| 2025/3/31 | 生成AIによる業務効率化と活用事例集 |
| 2024/10/31 | 自然言語処理の導入と活用事例 |
| 2024/1/12 | 世界のマテリアルズ・インフォマティクス 最新業界レポート |
| 2023/12/27 | 実験の自動化・自律化によるR&Dの効率化と運用方法 |
| 2023/4/28 | ケモインフォマティクスにおけるデータ収集の最適化と解析手法 |
| 2021/7/30 | マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例 |
| 2021/6/28 | AI・MI・計算科学を活用した蓄電池研究開発動向 |
| 2020/12/30 | 実践Rケモ・マテリアル・データサイエンス |
| 2020/8/11 | 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート |
| 2020/8/1 | 材料およびプロセス開発のためのインフォマティクスの基礎と研究開発最前線 |
| 2019/1/31 | マテリアルズ・インフォマティクスによる材料開発と活用集 |
| 2006/1/24 | セルフアセスメント手法の導入と実践 |