技術セミナー・研修・出版・書籍・通信教育・eラーニング・講師派遣の テックセミナー ジェーピー

AI機械学習原理を理解するための数式読み方入門

AI機械学習の活用・導入のためにこれだけは押さえておきたい数学 超入門 (2日目 / 全2日間)

AI機械学習原理を理解するための数式読み方入門

オンライン 開催
  • 受講特典: アーカイブ配信付き (視聴期間: 2024年12月24日〜30日)

関連セミナーとの同時申し込みで特別割引にて受講いただけます。

開催日

  • 2024年12月23日(月) 10時30分 16時30分

修得知識

  • ディープラーニングの内部原理
  • AI機械学習の基本
    • ベクトル
    • 行列
    • 指数関数
    • 偏微分
  • AI機械学習ツールの内部動作
  • AI機械学習ツールのオプション設定

プログラム

 本セミナー2日目は、前半までの数式記号に限定した範囲で、AI機械学習の基礎中の基礎の項目であるニューラルネット計算原理を解説します。本セミナー後半の到達点としては、ニューラルネット計算誤差関数の最小化アルゴリズム計算の理解です。そのため、AIのなかでもニューラルネットに絞り込みんで確実に内部計算を追えるようにします。そのほかへの展開は、これまで数式が障壁だったのを本セミナーで乗り越えた受講者が自ら開拓されていくものと考えます。

  1. データへの数式あてはめ
    1. データと回帰式
      • データの傾向
      • 数式あてはめ
    2. 最小2乗法
      • 偏微分
      • 合成関数の適用
  2. ニューラルネットのしくみ
    1. NNのしくみ (ディープラーニングとは)
    2. 簡単な数式モデル (勉強用の数式設定)
    3. 順伝搬 (出力計算の流れ)
  3. AI機械学習のしくみ
    1. 損失関数 (学習誤差全体の数式)
    2. 勾配急降下法 (最小二乗法の次の手)
  4. 誤差逆伝搬計算のしくみ
    1. 誤差逆伝搬の考え (ディープラーニングの場合)
    2. 重み調整の数式 (合成偏微分の適用を理解)
    3. 学習最適化手法
  5. 事例:GPTの数式を見てみよう
    1. 自然言語のベクトル埋込み
    2. Transformerニューラルネット
    3. 実は数式計算しているだけ
    • 質疑応答

講師

主催

お支払い方法、キャンセルの可否は、必ずお申し込み前にご確認をお願いいたします。

お問い合わせ

本セミナーに関するお問い合わせは tech-seminar.jpのお問い合わせからお願いいたします。
(主催者への直接のお問い合わせはご遠慮くださいませ。)

受講料

1名様
: 36,200円 (税別) / 39,820円 (税込)
複数名
: 25,000円 (税別) / 27,500円 (税込)

複数名受講割引

  • 2名様以上でお申込みの場合、1名あたり 25,000円(税別) / 27,500円(税込) で受講いただけます。
    • 1名様でお申し込みの場合 : 1名で 36,200円(税別) / 39,820円(税込)
    • 2名様でお申し込みの場合 : 2名で 50,000円(税別) / 55,000円(税込)
    • 3名様でお申し込みの場合 : 3名で 75,000円(税別) / 82,500円(税込)
  • 同一法人内 (グループ会社でも可) による複数名同時申込みのみ適用いたします。
  • 受講券、請求書は、代表者にご郵送いたします。
  • 請求書および領収書は1名様ごとに発行可能です。
    申込みフォームの通信欄に「請求書1名ごと発行」とご記入ください。
  • 他の割引は併用できません。
  • サイエンス&テクノロジー社の「2名同時申込みで1名分無料」価格を適用しています。

アカデミー割引

教員、学生および医療従事者はアカデミー割引価格にて受講いただけます。

  • 1名様あたり 10,000円(税別) / 11,000円(税込)
  • 企業に属している方(出向または派遣の方も含む)は、対象外です。
  • お申込み者が大学所属名でも企業名義でお支払いの場合、対象外です。

全2コース申込セット受講料について

  • 通常受講料 : 79,640円(税込) → 全2コース申込 割引受講料 71,060円(税込)
  • 通常受講料 : 72,400円(税別) → 全2コース申込 割引受講料 64,600円(税別)

2日間コースのお申込み

割引対象セミナー

ライブ配信セミナーについて

  • 本セミナーは「Zoom」を使ったライブ配信セミナーとなります。
  • お申し込み前に、 視聴環境テストミーティングへの参加手順 をご確認いただき、 テストミーティング にて動作確認をお願いいたします。
  • 開催日前に、接続先URL、ミーティングID​、パスワードを別途ご連絡いたします。
  • セミナー開催日時に、視聴サイトにログインしていただき、ご視聴ください。
  • セミナー資料は、PDFファイルをダウンロードいただきます。
  • ご自宅への書類送付を希望の方は、通信欄にご住所・宛先などをご記入ください。
  • タブレットやスマートフォンでも受講可能ですが、機能が制限される場合があります。
  • ご視聴は、お申込み者様ご自身での視聴のみに限らせていただきます。不特定多数でご覧いただくことはご遠慮下さい。
  • 講義の録音、録画などの行為や、権利者の許可なくテキスト資料、講演データの複製、転用、販売などの二次利用することを固く禁じます。
  • Zoomのグループにパスワードを設定しています。お申込者以外の参加を防ぐため、パスワードを外部に漏洩しないでください。
    万が一、部外者が侵入した場合は管理者側で部外者の退出あるいはセミナーを終了いたします。
本セミナーは終了いたしました。

これから開催される関連セミナー

開始日時 会場 開催方法
2025/1/20 ベイズ最適化を活用した実験の効率化と開発期間短縮 オンライン
2025/1/21 技術者・研究者のための実験計画法入門 オンライン
2025/1/23 医療機器QMSで有効な統計的手法とサンプルサイズ決定 オンライン
2025/1/23 時系列データ分析 入門 オンライン
2025/1/24 着実にステップアップできる多変量解析講座 オンライン
2025/1/24 マテリアルズインフォマティクスの基盤となる「計算科学シミュレーション技術」 オンライン
2025/1/24 成功例・失敗例を踏まえた適切な医薬品売上予測とデータ収集法 オンライン
2025/1/27 統計手法の基礎 オンライン
2025/1/27 感性工学商品開発プロセスへのAI応用 オンライン
2025/1/28 AI外観検査 (画像認識) のはじめ方、すすめ方、精度向上への考え方 オンライン
2025/1/29 分析法バリデーションコース (2日間) オンライン
2025/1/29 計算ブラックボックスからの脱却と精度評価の本質に迫る オンライン
2025/1/29 説明可能AI (XAI) から人と共に進化・発展するAIへ オンライン
2025/1/29 Python実践データ分析/機械学習 オンライン
2025/1/29 検定・推定 (主に計量値) オンライン
2025/1/30 Excelで始める実践データ分析 オンライン
2025/1/30 マテリアルズ・インフォマティクスの基礎と実践 オンライン
2025/1/31 生物統計学基礎の基礎講座 オンライン
2025/2/3 医療機器QMSで有効な統計的手法とサンプルサイズ決定 オンライン
2025/2/3 成功例・失敗例を踏まえた適切な医薬品売上予測とデータ収集法 オンライン

関連する出版物

発行年月
2023/6/30 生産プロセスにおけるIoT、ローカル5Gの活用
2022/12/31 機械学習・ディープラーニングによる "異常検知" 技術と活用事例集
2022/8/31 医療機器の設計開発における統計的手法とそのサンプルサイズ設定
2021/10/25 AIプロセッサー (CD-ROM版)
2021/10/25 AIプロセッサー
2021/10/18 医療機器の設計・開発時のサンプルサイズ設定と設定根拠
2021/7/30 マテリアルズインフォマティクスのためのデータ作成とその解析、応用事例
2021/7/14 AIビジネスのブレークスルーと規制強化
2021/6/30 人工知能を用いた五感・認知機能の可視化とメカニズム解明
2021/6/28 AI・MI・計算科学を活用した蓄電池研究開発動向
2020/8/11 化学・素材業界におけるデジタルトランスフォーメーションの最新調査レポート
2020/7/31 生体情報センシングと人の状態推定への応用
2020/4/30 生体情報計測による感情の可視化技術
2020/3/26 ビッグデータ・AIの利活用に伴う法的留意点
2020/3/24 リアルワールドデータの使用目的に応じた解析手法 - 各データベースの選択と組み合わせ -
2019/1/31 センサフュージョン技術の開発と応用事例
2018/5/31 “人工知能”の導入による生産性、効率性の向上、新製品開発への活用
2018/4/25 統計学的アプローチを活用した分析法バリデーションの評価及び妥当性
2017/5/10 分析法バリデーション実務集
2013/6/21 機械学習によるパターン識別と画像認識への応用